Cover Image

Conversion of model C6–C9 alkanes and straight-run gasoline over Pt(0.1%)-Fe(5%)/Al2O3 catalysts promoted with various additives

Arai K. Zhumabekova, Lyazzat K. Tastanova, Raigul O. Orynbassar, Yermek A. Aubakirov, Elvira B. Zhunusova

Abstract


Growing demand for hydrogen promotes the research devoted to the development of new catalysts for hydrocarbons processing in absence of H2 or at its low concentration. In the present work, it was shown that during the conversion of straight-run gasoline on a zeolite-containing polyfunctional catalyst in a hydrogen-free environment cracking, dehydrogenation, isomerization and alkylation take place due to the redistribution of H2 between initial and formed products directly on the catalyst surface. Fine particles (≤50 Å) localize in zeolite cavities and pores of aluminum oxide, while larger ones are on their outer surface.

Keywords


C6–C9 n-alkanes; straight-run gasoline; zeolite-containing catalyst; modification; additives

Full Text:

PDF

References


Wu L, Liang XQ, Kang LX, Liu YZ. Integration strategies of hydrogen network in a refinery based on operational optimization of hydrotreating units. Chin J Chem Eng. 2017;25(8):1061–1068. doi:10.1016/j.cjche.2017.01.003

Bondarenko VL, Ilyinskaya DN, Kazakova AA, Kozlovtsev PS, Lavrov NA, Razenko EA. Hydrogen, its Unique Properties and Applications in Industry. Chem Pet Eng. 2022;57(11–12):1015–1019. doi:10.1007/s10556-022-01039-7

Pleshakova NA, Zanozina II, Shabalina OE, Rokhman'ko EN, Mishustina TV. Hydrofining of heavy vacuum gas oil on modified alumina-nickel-molybdenum catalysts. Pet Chem. 2012;52(4):233–239. doi:10.1134/S096554411204007X

Zhao GL, Nielsen ER, Troncoso E, Hyde K, Romeo JS, Diderich M. Life cycle cost analysis: A case study of hydrogen energy application on the Orkney Islands. Int J Hydrog Energy. 2019;44(19):9517–9528. doi:10.1016/j.ijhydene.2018.08.015

Tarasenko AB, Kiseleva SV, Popel OS. Hydrogen energy pilot introduction-Technology competition. Int J Hydrog Energy. 2022;47(23):11991–11997. doi:10.1016/j.ijhydene.2022.01.242

Hsu CW. Constructing an evaluation model for hydrogen application pathways. Int J Hydrog Energy. 2013;38(35):15836–15842. doi:10.1016/j.ijhydene.2013.05.100

Felseghi RA, Carcadea E, Raboaca MS, Trufin CN, Filote C. Hydrogen fuel cell technology for the sustainable future of stationary applications. Energies. 2019;12(23):4593. doi:10.3390/en12234593

Hashimoto K. Global carbon dioxide recycling: for global sustainable development by renewable energy. Springer Briefs in Energy. Springer: Singapure; 2019.89–90. doi:10.1007/978-981-13-8584-1_13

De Miranda PEV. Science and engineering of hydrogen-based energy technologies: hydrogen production and practical applications in energy generation. Elsevier: London; 2019.1–420.

Wang H, Lin, HF, Feng P, Han X, Zheng Y. Integration of catalytic cracking and hydrotreating technology for triglyceride deoxygenation. Catalysis Today. 2017;291:172–179. doi:10.1016/j.cattod.2016.12.009

Yin ZL. Operation and optimization of residue hydrotreating unit using new catalyst system. China Petroleum Process Petrochem Technol. 2012;14(3):50–58.

Sun JH, Li Y, Mu C, Wei J, Zhao YJ, Ma XB, Wang SP. Supported heteropolyacids catalysts for the selective hydrocracking and isomerization of n-C16 to produce jet fuel. Appl Catalysis A Gen. 2020;598:117556. doi:10.1016/j.apcata.2020.117556

del Campo P, Martinez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem Soc Rev. 2021;50(15):8511–8595. doi:10.1039/d0cs01459a

Guisnet M, Pinard L. Characterization of acid-base catalysts through model reactions. Catal Rev Sci Eng. 2018;60(3):337–436. doi:10.1080/01614940.2018.1446683

Bi YF, Xia GF, Huang WG, Nie H. Hydroisomerization of long chain n-paraffins: the role of the acidity of the zeolite. RSC Adv. 2015;5(120):99201–99206. doi:10.1039/c5ra13784e

Jokar F, Alavi SM, Rezaei M. Investigating the hydroisomerization of n-pentane using Pt supported on ZSM-5, desilicated ZSM-5, and modified ZSM-5/MCM-41. Fuel. 2022;324(A):124511. doi:10.1016/j.fuel.2022.124511

Kuznetsov PN. Study of n-octane hydrocracking and hydroisomerization over Pt/HY zeolites using the reactors of different configurations. J Catal. 2003;218(1):12–23. doi:10.1016/S0021-9517(03)00139-8

Lapidus AL, Mentyukov DA, Dergachev AA. Isomeration of n-hexane on Pt-containing zeolites L and eryonite. Oil Refinery and Petrochemistry. 2005;7:9–12. [in Russian].

Zhumabekova AK, Tastanova LK, Orynbassar RO, Zakumbaeva GD. Effect of modifiers on Fe-Pt/Al2O3 catalysts for alkanes hydrotreatment. Bull Univ Karaganda Chem. 2020;100:104–118. doi:10.31489/2020Ch4/104-118

Li XN, Zhu KY, Pang JF, Tian M, Liu JY, Rykov AI, Zheng MY, Wang XD, Zhu XF, Huang YQ, Liu B, Wang JH, Yang WS, Zhang T. Unique role of Mossbauer spectroscopy in assessing structural features of heterogeneous catalysts. Appl Catal B-Environ. 2018;224:518–532. doi:10.1016/j.apcatb.2017.11.004




DOI: https://doi.org/10.15826/chimtech.2022.9.3.08

Copyright (c) 2022 Arai K. Zhumabekova, Lyazzat K. Tastanova, Raigul O. Orynbassar, Yermek A. Aubakirov, Elvira B. Zhunusova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International