Cover Image

Influence of alloying (Cr, Fe, Ni) on the corrosion resistance of layers formed by electron-beam processing

Evdokiya Bushueva, Evgeniy Turlo, Evgeniya Kladieva, Veronica Sulyaeva, Elizaveta Pukhova


The paper presents the results of comparative analysis of the properties of coatings based on chromium, nickel and iron borides. The alloy obtained in the process of electron-beam surfacing of the powder mixture “amorphous boron – 10 wt.% chromium” has the best properties. This is explained by the structures, fine chromium borides Cr2B and complex iron borides (Fe, Cr)2B, distributed in the austenitic matrix. The material modified in this way in a nitric acid solution corrodes at a rate of 0.02 mm/year. In sulfuric acid, its corrosion rate is 0.81 mm/year.


stainless steel; corrosion resistance; surface modification; electron beam; metal borides

Full Text:



Paschke H, Stueber M, Ziebert C, Bistron M, Mayrhofer P. Composition, microstructure and mechanical properties of boron containing multilayer coatings for hot forming tools. Surf Coatings Technol. 2011;205:S24–S28. doi:10.1016/j.surfcoat.2011.04.097

Takai T, Furukawa T, Yamano H. Thermophysical properties of austenitic stainless steel containing boron carbide in a solid state. Mech Eng J. 2021;8(4):20-00540. doi:10.1299/mej.20-00540

Drobyaz E, Zimoglyadova T, Gromov V. Electron-beam surfacing wear-resistant coatings, reinforced refractory metal’s borides. Appl Mech Mater. 2015;698:419–423. doi:10.4028/

Orsulova T, Palcek P, Kudelcik J. Effect of plastic deformation on the magnetic properties of selected austenitic stainless steels. Prod Eng Arch. 2017;14(14):15–18. doi:10.30657/pea.2017.14.04

Tanhaei S, Gheisari K, Zaree S. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel. Int J Miner Metall Mater. 2018;25(6):630–640. doi:10.1007/s12613-018-1610-y

Roos S, Rännar E. Process window for electron beam melting of 316LN stainless steel. Metall. 2021;11(1):137. doi:10.3390/met11010137

Gur'ev A, Lygdenov B, Gur'ev M. Borirovanie malouglerodistoy stali (Boridingof mildsteel). M: Moscow, Russia; 2015. 141 p. Russian.

Bushueva E, Turlo Y, Khamgushkeeva G. Influence of chromium concentration on corrosion resistance of surface layers of stainless steel. In: International Russian-Kazakhstan Conference Chemical Technologies of Functional Materials (RKFM–2021). 2021;340:7. doi:10.1051/matecconf/202134001022

Wang S, Yu X, Zhang J, He D, Zhao Y. Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4. J Superhard Mater. 2014;36(4):279–287. doi:10.3103/S1063457614040066

Vasil'cov V, Galushkin M, Il'ichev I. Layer-by-layer laser cladding of metal powders: analytical theory and experiment. Vestnik MGTU im. NJe Baumana. 2012;6(6):24–26. Russian. doi:10.18698/2308-6033-2012-6-227

Keddam M, Kul'ka M. Modeling the kinetics of boriding steel AISID2 using two different approaches. Metalloved Term Obrabotka Metall. 2019;12:13–20. Russian. doi:10.30906/mitom.2019.12.13-20

Filonenko N. The physical and thermodynamic functions of borides. Phys Chem Solid State. 2017;18(1):58–63. doi:10.15330/pcss.18.1.58-63

Basak S, Sahu K, Sharm S, Majumdar J. Studies on electron beam surface melting of AISI 316 stainless steel and AISI 347 stainless steel. Proced Manuf. 2016;7:647–653. doi:10.1016/j.promfg.2016.12.096

Drobjaz E, Golkovskiy M, Chakin I. Corrosion resistance of materials obtained by electron-beam surfacing by Fe-Cr-Ni-Ti powder mixtures. Metall Term Obrabotka Metall. 2021;12:48–53. Russian. doi:10.30906/mitom.2021.12.48-53

Bushueva E, Grinberg B, Bataev V, Drobyaz E. Raising the resistance of chromium-nickel steel to hydroabrasive wear by non-vacuum electron-beam cladding with boron. Metal Sci Heat Treat. 2019;60(9):641–644. doi:10.1007/s11041-019-00331-3

Emurlaev K, Golkovskij M, Stepanov N, Bataeva Z. Structure and properties of surface layers obtained by the method of non-vacuum electron-beam surfacing by powder mixtures of copper and boron. Metall. 2021;11:62–68. Russian. doi:10.52351/00260827_2021_11_62

Malinina E, Goevaya L, Buzanova G, Avdeeva V, Efimova N, Kuznetsov N. A new method for synthesis of binary borides with desired properties. Chem. 2019;487(2):180–183. doi:10.1134/S0012500819070061

Karaimchuk E, Masljuk V, Mamonova A, Umerova S. Phase-structure formation and features of the behavior of powder materials "iron-high-carbon ferrochromium-nickel boride" under abrasive wear conditions. Izvestiya Vuzov. 2020;1:55–64. Russian. doi:10.17073/1997-308X-2020-55-64

Soyama J, Zepon G, Lopes T, Beraldo L. Microstructure formation and abrasive wear resistance of a boron-modified superduplex stainless steel produced by spray forming. J Mater Res. 2016;31(19):2987–2993. doi:10.1557/JMR.2016.323

Koga G, Jorge A, Roche V, Nogueira R. Production and corrosion resistance of thermally sprayed Fe-based amorphous coatings from mechanically milled feedstock powders. Metall Mater Trans A. 2018;49(10):4860–4870. doi:10.1007/s11661-018-4785-y

Ye L, Wei Y, Shi X, Li Y, Shi Q. Study on W-rich M3B2 borides in a 9Cr3W3CoB heat-resistant steel. J Mater Res Technol. 2021;10:594–604. doi:10.1016/J.JMRT.2021.05.004

Wei X. First-principles investigation of Cr-doped Fe2B: Structural, mechanical, electronic and magnetic properties. J Magn Magn Mater. – 2018;456:150–159. doi:10.1016/j.jmmm.2018.02.004

Koga G, Otani L, Silva A, Roche V. Characterization and corrosion resistance of boron-containing-austenitic stainless steels produced by rapid solidification techniques. Mater. 2018;11(11):2189. doi:10.3390/ma11112189

Krylova T, Ivanov K, Chumakov Yu, Trotsenko R. Corrosion and wear resistance of coatings produced by nonvacuum electron beam cladding of refractory carbides on low-carbon steel. Inorg Mater. 2020;56(3):328–332. doi:10.1134/S0020168520030097

Krylova T, Chumakov Y. Fabrication of Cr-Ti-C composite coating by non-vacuum electron beam cladding. Mater Lett. 2020;274:128022. doi:10.1016/j.matlet.2020.128022

Baranova A, Konstantinova M, Guseva E, Grechneva M. Intergranular corrosion of austenitic steels. Sistem Metod Tehnol. 2015;2:142–147. Russian. Available from:, Accessed on 1 June 2022.


Copyright (c) 2022 Evdokiya Bushueva, Evgeniy Turlo, Evgeniya Kladieva, Veronica Sulyaeva, Elizaveta Pukhova

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)