Influence of alloying (Cr, Fe, Ni) on the corrosion resistance of layers formed by electron-beam processing
Abstract
Keywords
Full Text:
PDFReferences
Paschke H, Stueber M, Ziebert C, Bistron M, Mayrhofer P. Composition, microstructure and mechanical properties of boron containing multilayer coatings for hot forming tools. Surf Coatings Technol. 2011;205:S24–S28. doi:10.1016/j.surfcoat.2011.04.097
Takai T, Furukawa T, Yamano H. Thermophysical properties of austenitic stainless steel containing boron carbide in a solid state. Mech Eng J. 2021;8(4):20-00540. doi:10.1299/mej.20-00540
Drobyaz E, Zimoglyadova T, Gromov V. Electron-beam surfacing wear-resistant coatings, reinforced refractory metal’s borides. Appl Mech Mater. 2015;698:419–423. doi:10.4028/www.scientific.net/AMM.698.419
Orsulova T, Palcek P, Kudelcik J. Effect of plastic deformation on the magnetic properties of selected austenitic stainless steels. Prod Eng Arch. 2017;14(14):15–18. doi:10.30657/pea.2017.14.04
Tanhaei S, Gheisari K, Zaree S. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel. Int J Miner Metall Mater. 2018;25(6):630–640. doi:10.1007/s12613-018-1610-y
Roos S, Rännar E. Process window for electron beam melting of 316LN stainless steel. Metall. 2021;11(1):137. doi:10.3390/met11010137
Gur'ev A, Lygdenov B, Gur'ev M. Borirovanie malouglerodistoy stali (Boridingof mildsteel). M: Moscow, Russia; 2015. 141 p. Russian.
Bushueva E, Turlo Y, Khamgushkeeva G. Influence of chromium concentration on corrosion resistance of surface layers of stainless steel. In: International Russian-Kazakhstan Conference Chemical Technologies of Functional Materials (RKFM–2021). 2021;340:7. doi:10.1051/matecconf/202134001022
Wang S, Yu X, Zhang J, He D, Zhao Y. Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4. J Superhard Mater. 2014;36(4):279–287. doi:10.3103/S1063457614040066
Vasil'cov V, Galushkin M, Il'ichev I. Layer-by-layer laser cladding of metal powders: analytical theory and experiment. Vestnik MGTU im. NJe Baumana. 2012;6(6):24–26. Russian. doi:10.18698/2308-6033-2012-6-227
Keddam M, Kul'ka M. Modeling the kinetics of boriding steel AISID2 using two different approaches. Metalloved Term Obrabotka Metall. 2019;12:13–20. Russian. doi:10.30906/mitom.2019.12.13-20
Filonenko N. The physical and thermodynamic functions of borides. Phys Chem Solid State. 2017;18(1):58–63. doi:10.15330/pcss.18.1.58-63
Basak S, Sahu K, Sharm S, Majumdar J. Studies on electron beam surface melting of AISI 316 stainless steel and AISI 347 stainless steel. Proced Manuf. 2016;7:647–653. doi:10.1016/j.promfg.2016.12.096
Drobjaz E, Golkovskiy M, Chakin I. Corrosion resistance of materials obtained by electron-beam surfacing by Fe-Cr-Ni-Ti powder mixtures. Metall Term Obrabotka Metall. 2021;12:48–53. Russian. doi:10.30906/mitom.2021.12.48-53
Bushueva E, Grinberg B, Bataev V, Drobyaz E. Raising the resistance of chromium-nickel steel to hydroabrasive wear by non-vacuum electron-beam cladding with boron. Metal Sci Heat Treat. 2019;60(9):641–644. doi:10.1007/s11041-019-00331-3
Emurlaev K, Golkovskij M, Stepanov N, Bataeva Z. Structure and properties of surface layers obtained by the method of non-vacuum electron-beam surfacing by powder mixtures of copper and boron. Metall. 2021;11:62–68. Russian. doi:10.52351/00260827_2021_11_62
Malinina E, Goevaya L, Buzanova G, Avdeeva V, Efimova N, Kuznetsov N. A new method for synthesis of binary borides with desired properties. Chem. 2019;487(2):180–183. doi:10.1134/S0012500819070061
Karaimchuk E, Masljuk V, Mamonova A, Umerova S. Phase-structure formation and features of the behavior of powder materials "iron-high-carbon ferrochromium-nickel boride" under abrasive wear conditions. Izvestiya Vuzov. 2020;1:55–64. Russian. doi:10.17073/1997-308X-2020-55-64
Soyama J, Zepon G, Lopes T, Beraldo L. Microstructure formation and abrasive wear resistance of a boron-modified superduplex stainless steel produced by spray forming. J Mater Res. 2016;31(19):2987–2993. doi:10.1557/JMR.2016.323
Koga G, Jorge A, Roche V, Nogueira R. Production and corrosion resistance of thermally sprayed Fe-based amorphous coatings from mechanically milled feedstock powders. Metall Mater Trans A. 2018;49(10):4860–4870. doi:10.1007/s11661-018-4785-y
Ye L, Wei Y, Shi X, Li Y, Shi Q. Study on W-rich M3B2 borides in a 9Cr3W3CoB heat-resistant steel. J Mater Res Technol. 2021;10:594–604. doi:10.1016/J.JMRT.2021.05.004
Wei X. First-principles investigation of Cr-doped Fe2B: Structural, mechanical, electronic and magnetic properties. J Magn Magn Mater. – 2018;456:150–159. doi:10.1016/j.jmmm.2018.02.004
Koga G, Otani L, Silva A, Roche V. Characterization and corrosion resistance of boron-containing-austenitic stainless steels produced by rapid solidification techniques. Mater. 2018;11(11):2189. doi:10.3390/ma11112189
Krylova T, Ivanov K, Chumakov Yu, Trotsenko R. Corrosion and wear resistance of coatings produced by nonvacuum electron beam cladding of refractory carbides on low-carbon steel. Inorg Mater. 2020;56(3):328–332. doi:10.1134/S0020168520030097
Krylova T, Chumakov Y. Fabrication of Cr-Ti-C composite coating by non-vacuum electron beam cladding. Mater Lett. 2020;274:128022. doi:10.1016/j.matlet.2020.128022
Baranova A, Konstantinova M, Guseva E, Grechneva M. Intergranular corrosion of austenitic steels. Sistem Metod Tehnol. 2015;2:142–147. Russian. Available from: https://www.elibrary.ru/item.asp?id=23599020&ysclid=l4tjis19og57936900, Accessed on 1 June 2022.
DOI: https://doi.org/10.15826/chimtech.2022.9.3.14
Copyright (c) 2022 Evdokiya Bushueva, Evgeniy Turlo, Evgeniya Kladieva, Veronica Sulyaeva, Elizaveta Pukhova
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice