Cover Image

Synthesis and performance evaluation of polymeric surfactant from rice husk and polyethylene glycol for the enhanced oil recovery process

Slamet Priyanto, Ronny W. Sudrajat, Suherman Suherman, Bambang Pramudono, Teguh Riyanto, Desty D. Setianingrum, Alfin A. Pratama


A tertiary recovery technique is needed to recover the remained oil in the oil field after primary and secondary recoveries, which can only recover approximately 30–50% of the total oil. This study investigated the synthesized polymeric surfactants from rice husk and polyethylene glycol (PEG) for the enhanced oil recovery (EOR) process as a tertiary recovery technique. The rice husk was used as sodium lignosulfonate (SLS) surfactant production feedstock. SLS-PEG polymer surfactant from rice husk has not been widely studied, especially for the EOR process. This study has comprehensively investigated the effect of PEG concentration on the polymeric surfactant properties. The surfactants were characterized using Fourier transform-Infrared (FT-IR) analysis. Several other tests were also conducted, including surfactant compatibility, viscosity, thermal stability, interfacial tension (IFT), and phase behavior. It was found that the PEG introduction to the SLS surfactant could increase the hydrophilic property of the polymeric surfactant due to the presence of the C−O−C group. In addition, the IFT value decreased with the increase in the PEG concentration due to the increase in the hydrophilic property. However, the IFT value decreased when the PEG concentration was too high. The lowest IFT value was obtained at the SLS to PEG ratio of 1:0.8. It produced the highest increase in the additional recovered oil after brine flooding. The results showed that the rice husk, which is agricultural waste, could be utilized as a feedstock for the surfactant production.


polymeric surfactant; rice husk; sodium lignosulfonate; polyethylene glycol; enhanced oil recovery

Full Text:



Nilsson MA, Kulkarni R, Gerberich L, Hammond R, Singh R, Baumhoff E, Rothstein JP. Effect of fluid rheology on en-hanced oil recovery in a microfluidic sandstone device. J Nonnewton Fluid Mech. 2013;202:112–119. doi:10.1016/j.jnnfm.2013.09.011

Nwidee LN, Theophilus S, Barifcani A, Sarmadivaleh M, Iglauer S. EOR Processes, Opportunities and Technological Advancements. In: Chemical Enhanced Oil Recovery (CEOR) – a Practical Overview. InTech; 2016:3–52. doi:10.5772/64828

Priyanto S, Sudrajat RW, Suherman S, Pramudono B, Ri-yanto T, Dasilva TMFB, Yuniar RC, Aviana H. High-performance polymeric surfactant of sodium lignosul-fonate-polyethylene glycol 4000 (SLS-PEG) for enhanced oil recovery (EOR) process. Period Polytech Chem Eng. 2022;66(1):114–124. doi:10.3311/PPch.17972

Li S, Lau HC, Torsæter O, Hendraningrat L, Temizel C. Na-noparticles for enhanced oil recovery. In: Temizel C, Canbaz CH, Torsæter O, Sari MM, Saputelli LA, eds. Sus-tainable Materials for Oil and Gas Applications. Elsevier; 2021:125–174. doi:10.1016/B978-0-12-824380-0.00005-0

Wang Y, Zhao F, Bai B, Zhang J, Xiang W, Li X, Zhou W. Op-timized Surfactant IFT and Polymer Viscosity for Surfac-tant-Polymer Flooding in Heterogeneous Formations. In: SPE Improved Oil Recovery Symposium. Vol 1. SPE; 2010:12–22. doi:10.2118/127391-MS

Qiu X, Kong Q, Zhou M, Yang D. Aggregation behavior of sodium lignosulfonate in water solution. J Phys Chem B. 2010;114(48):15857–15861. doi:10.1021/jp107036m

Dasilva T, Sudrajat RW, Kasmiyatun M, Priyanto S, Suher-man, Pramudono B, Elmushidi AD, Fauzan A. Synthesis of Sodium Lignosulfonate (SLS) Surfactant and Polyethylene Glycol (PEG) as Surfactants in Enhanced Oil Recovery (EOR). IOP Conf Ser Mater Sci Eng. 2021;1053(1):012068. doi:10.1088/1757-899X/1053/1/012068

Sudrajat RW, Kasmiyatun M, Suherman S, Pramudono B, Purba DA, Harlika FKA. Synthesis and characterization of sodium lignosulfonate surfactant with polyethylene glycol for enhanced oil recovery. AIP Conf Proc. 2020;2197:080001. doi:10.1063/1.5140941

Priyanto S, Kusworo TD, Sayyidah, Pramudono B, Untoro E, Ratu P. Characterization and Purification of Surfactant So-dium Ligno Sulfonate (SLS) From Biomass Waste in The Application Of Enhanced Oil Recovery (EOR). J Phys Conf Ser. 2019;1295(1):012015. doi:10.1088/1742-6596/1295/1/012015

Priyanto S, Salsabila FF, Pusakawati R, Kusworo TD, Pramudono B, Untoro E, Ratu P. Hydrodynamic study: The best injection pressure in enhanced oil recovery (EOR) us-ing surfactant sodium ligno sulfonate (SLS) from black liq-uor. AIP Conf Proc. 2020;2197. doi:10.1063/1.5140945

Zulkifli NN, Mahmood SM, Akbari S, Manap AAA, Kechut NI, Elrais KA. Evaluation of new surfactants for enhanced oil recovery applications in high-temperature reservoirs. J Pet Explor Prod Technol. 2020;10(2):283–296. doi:10.1007/s13202-019-0713-y

Belhaj AF, Elraies KA, Mahmood SM, Zulkifli NN, Akbari S, Hussien OSE. The effect of surfactant concentration, salini-ty, temperature, and pH on surfactant adsorption for chem-ical enhanced oil recovery: a review. J Pet Explor Prod Technol. 2020;10(1):125–137. doi:10.1007/s13202-019-0685-y

Babu K, Pal N, Bera A, Saxena VK, Mandal A. Studies on interfacial tension and contact angle of synthesized surfac-tant and polymeric from castor oil for enhanced oil recov-ery. Appl Surf Sci. 2015;353:1126–1136.doi:10.1016/j.apsusc.2015.06.196

Sun C, Guo H, Li Y, Song K. Recent Advances of Surfactant-Polymer (SP) Flooding Enhanced Oil Recovery Field Tests in China. Geofluids. 2020;2020:8286706. doi:10.1155/2020/8286706

Yin D, Zhao D. Main Controlling Factor of Polymer-Surfactant Flooding to Improve Recovery in Heterogeneous Reservoir. Adv Mater Sci Eng. 2017;2017:5247305. doi:10.1155/2017/5247305

Ma’ruf A, Pramudono B, Aryanti N. Synthesis of Natural Surfactant of Sodium Lignosulfonate from Rice Husk Lignin by Ultrasound Assisted - Sulfonation. Key Eng Mater. 2018;775:20–25. doi:10.4028/

Ma’ruf A, Pramudono B, Aryanti N. Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. AIP Conf Proc. 2017;1823:020013. doi:10.1063/1.4978086

Priyanto S, Pramudono B, Kusworo TD, Suherman, Aji HA, Untoro E, Ratu P. Synthesis Study of Surfactants Sodium Ligno Sulphonate (SLS) from Biomass Waste Using Fourier Transform Infra Red (FTIR). MATEC Web Conf. 2018;156:03030. doi:10.1051/matecconf/201815603030

Kubo S, Kadla JF. Kraft lignin/poly(ethylene oxide) blends: Effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci. 2005;98(3):1437–1444. doi:10.1002/app.22245

Shao Y, Guizani C, Grosseau P, Chaussy D, Beneventi D. Thermal characterization and kinetic analysis of microfibrillated cellulose/lignosulfonate blends. J Anal Appl Pyrolysis. 2017;124:25–34. doi:10.1016/j.jaap.2017.03.001

Smith BC. Infrared Spectral Interpretation: A Systematic Approach. CRC Press; 1998.

Prakoso NI, Purwono S, Rochmadi. Synthesis of sodium lignosulphonate from oil palm empty fruit bunches’s lignin. AIP Conf Proc. 2017;1823:020037. doi:10.1063/1.4978110

Loganathan S, Sankaran S. Surface Chemical Studies on Silicon Carbide Suspensions in the Presence of Poly (Ethylene Glycol) and Chitosan. Sci Publ Gr. 2017;2(1):6–20.

Fu X, Kong W, Zhang Y, Jiang L, Wang J, Lei J. Novel solid-solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015;5(84):68881–68889. doi:10.1039/c5ra11842e

Lim ZQ, Aziz NAA, Idris AK, Md Akhir NA. Green Lignosulphonate as cosurfactant for wettability alteration. Pet Res. 2020;5(2):154–163. doi:10.1016/j.ptlrs.2019.12.002

Nakama Y. Surfactants. In: Sakamoto K, Lochhead RY, Maibach HI, Yamashita Y, eds. Cosmetic Science and Technology. Elsevier; 2017:231–244. doi:10.1016/B978-0-12-802005-0.00015-X

Sudarmoyo S, Swadesi B, Andini AN, Siregar S, Kurnia R, Buhari A, Budiaman IGS. Laboratory study: The development of a sodium lignosulfonate (SLS) surfactant formulation for light oil reservoir to improve oil recovery. AIP Conf Proc. 2018;1977:030033. doi:10.1063/1.5042953

Azis MM, Rachmadi H, Wintoko J, Yuliansyah AT, Hasokowati W, Purwono S, Rochmadi W, Murachman B. On the use of sodium lignosulphonate for enhanced oil recovery. IOP Conf Ser Earth Environ Sci. 2017;65(1):012030. doi:10.1088/1755-1315/65/1/012030

Pramudono B, Aji HA, Priyanto S, Kusworo TD, Suherman S, Untoro E, Ratu P. Utilization of biomass waste of pulp and paper industry for production of sodium lignosulphonate (SLS). Nat Environ Pollut Technol. 2018;17(4):1299–1303.

Alli YF, Brioletty L, Eni H, Irawan Y. Co-Surfactant Polyethylene Glycol MonoOleate in the Formulation of Natural Based-Surfactant for Chemical EOR. Sci Contrib Oil Gas. 2017;40(1):1–8.

Moghadasi R, Rostami A, Hemmati-Sarapardeh A. Enhanced Oil Recovery Using CO2. In: Bahadori A, ed. Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs. Elsevier Inc.; 2018:61–99. doi:10.1016/B978-0-12-813027-8.00003-5

Pal S, Mushtaq M, Banat F, Al Sumaiti AM. Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives. Pet Sci. 2018;15(1):77–102. doi:10.1007/s12182-017-0198-6

Bustamante-Rendón RA, Pérez E, Gama Goicochea A. Comparing the efficiency of pure and mixed cationic and nonionic surfactants used in enhanced oil recovery by mesoscopic simulations. Fuel. 2020;277:118287. doi:10.1016/j.fuel.2020.118287

Boyer C, Liu J, Wong L, Tippett M, Bulmus V, Davis TP. Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations. J Polym Sci Part A Polym Chem. 2008;46(21):7207–7224. doi:10.1002/pola.23028

Truong V, Blakey I, Whittaker AK. Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by “click” chemistry. Biomacromolec. 2012;13(12):4012–4021. doi:10.1021/bm3012924

Zhang G, Yu J. Effect of commonly used EOR polymers on low concentration surfactant phase behaviors. Fuel. 2021;286:119465. doi:10.1016/j.fuel.2020.119465

Sheng JJ. Status of surfactant EOR technology. Petroleum. 2015;1(2):97–105. doi:10.1016/j.petlm.2015.07.003

Nguele R, Sasaki K, Salim HS Al, Sugai Y, Widiatmojo A, Nakano M. Microemulsion and phase behavior properties of (Dimeric ammonium surfactant salt - Heavy crude oil - Connate water) system. J Unconv Oil Gas Resour. 2016;14:62–71. doi:10.1016/j.juogr.2016.03.001

Shi Y, Shan G, Shang Y. Role of Poly(ethylene glycol) in Surfactant-Free Emulsion Polymerization of Styrene and Methyl Methacrylate. Langmuir. 2013;29(9):3024–3033. doi:10.1021/la304847a

Bera A, Mandal A. Microemulsions: a novel approach to enhanced oil recovery: a review. J Pet Explor Prod Technol. 2015;5(3):255–268. doi:10.1007/s13202-014-0139-5

Bera A, Kumar T, Ojha K, Mandal A. Screening of microemulsion properties for application in enhanced oil recovery. Fuel. 2014;121:198–207. doi:10.1016/j.fuel.2013.12.051


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2022 Slamet Priyanto, Ronny W. Sudrajat, Suherman Suherman, Bambang Pramudono, Teguh Riyanto, Desty D. Setianingrum, Alfin A. Pratama

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2023
ISSN 2411-1414 (Online)
Copyright Notice