Synthesis and performance evaluation of polymeric surfactant from rice husk and polyethylene glycol for the enhanced oil recovery process
Abstract
Keywords
Full Text:
PDFReferences
Nilsson MA, Kulkarni R, Gerberich L, Hammond R, Singh R, Baumhoff E, Rothstein JP. Effect of fluid rheology on en-hanced oil recovery in a microfluidic sandstone device. J Nonnewton Fluid Mech. 2013;202:112–119. doi:10.1016/j.jnnfm.2013.09.011
Nwidee LN, Theophilus S, Barifcani A, Sarmadivaleh M, Iglauer S. EOR Processes, Opportunities and Technological Advancements. In: Chemical Enhanced Oil Recovery (CEOR) – a Practical Overview. InTech; 2016:3–52. doi:10.5772/64828
Priyanto S, Sudrajat RW, Suherman S, Pramudono B, Ri-yanto T, Dasilva TMFB, Yuniar RC, Aviana H. High-performance polymeric surfactant of sodium lignosul-fonate-polyethylene glycol 4000 (SLS-PEG) for enhanced oil recovery (EOR) process. Period Polytech Chem Eng. 2022;66(1):114–124. doi:10.3311/PPch.17972
Li S, Lau HC, Torsæter O, Hendraningrat L, Temizel C. Na-noparticles for enhanced oil recovery. In: Temizel C, Canbaz CH, Torsæter O, Sari MM, Saputelli LA, eds. Sus-tainable Materials for Oil and Gas Applications. Elsevier; 2021:125–174. doi:10.1016/B978-0-12-824380-0.00005-0
Wang Y, Zhao F, Bai B, Zhang J, Xiang W, Li X, Zhou W. Op-timized Surfactant IFT and Polymer Viscosity for Surfac-tant-Polymer Flooding in Heterogeneous Formations. In: SPE Improved Oil Recovery Symposium. Vol 1. SPE; 2010:12–22. doi:10.2118/127391-MS
Qiu X, Kong Q, Zhou M, Yang D. Aggregation behavior of sodium lignosulfonate in water solution. J Phys Chem B. 2010;114(48):15857–15861. doi:10.1021/jp107036m
Dasilva T, Sudrajat RW, Kasmiyatun M, Priyanto S, Suher-man, Pramudono B, Elmushidi AD, Fauzan A. Synthesis of Sodium Lignosulfonate (SLS) Surfactant and Polyethylene Glycol (PEG) as Surfactants in Enhanced Oil Recovery (EOR). IOP Conf Ser Mater Sci Eng. 2021;1053(1):012068. doi:10.1088/1757-899X/1053/1/012068
Sudrajat RW, Kasmiyatun M, Suherman S, Pramudono B, Purba DA, Harlika FKA. Synthesis and characterization of sodium lignosulfonate surfactant with polyethylene glycol for enhanced oil recovery. AIP Conf Proc. 2020;2197:080001. doi:10.1063/1.5140941
Priyanto S, Kusworo TD, Sayyidah, Pramudono B, Untoro E, Ratu P. Characterization and Purification of Surfactant So-dium Ligno Sulfonate (SLS) From Biomass Waste in The Application Of Enhanced Oil Recovery (EOR). J Phys Conf Ser. 2019;1295(1):012015. doi:10.1088/1742-6596/1295/1/012015
Priyanto S, Salsabila FF, Pusakawati R, Kusworo TD, Pramudono B, Untoro E, Ratu P. Hydrodynamic study: The best injection pressure in enhanced oil recovery (EOR) us-ing surfactant sodium ligno sulfonate (SLS) from black liq-uor. AIP Conf Proc. 2020;2197. doi:10.1063/1.5140945
Zulkifli NN, Mahmood SM, Akbari S, Manap AAA, Kechut NI, Elrais KA. Evaluation of new surfactants for enhanced oil recovery applications in high-temperature reservoirs. J Pet Explor Prod Technol. 2020;10(2):283–296. doi:10.1007/s13202-019-0713-y
Belhaj AF, Elraies KA, Mahmood SM, Zulkifli NN, Akbari S, Hussien OSE. The effect of surfactant concentration, salini-ty, temperature, and pH on surfactant adsorption for chem-ical enhanced oil recovery: a review. J Pet Explor Prod Technol. 2020;10(1):125–137. doi:10.1007/s13202-019-0685-y
Babu K, Pal N, Bera A, Saxena VK, Mandal A. Studies on interfacial tension and contact angle of synthesized surfac-tant and polymeric from castor oil for enhanced oil recov-ery. Appl Surf Sci. 2015;353:1126–1136.doi:10.1016/j.apsusc.2015.06.196
Sun C, Guo H, Li Y, Song K. Recent Advances of Surfactant-Polymer (SP) Flooding Enhanced Oil Recovery Field Tests in China. Geofluids. 2020;2020:8286706. doi:10.1155/2020/8286706
Yin D, Zhao D. Main Controlling Factor of Polymer-Surfactant Flooding to Improve Recovery in Heterogeneous Reservoir. Adv Mater Sci Eng. 2017;2017:5247305. doi:10.1155/2017/5247305
Ma’ruf A, Pramudono B, Aryanti N. Synthesis of Natural Surfactant of Sodium Lignosulfonate from Rice Husk Lignin by Ultrasound Assisted - Sulfonation. Key Eng Mater. 2018;775:20–25. doi:10.4028/www.scientific.net/KEM.775.20
Ma’ruf A, Pramudono B, Aryanti N. Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. AIP Conf Proc. 2017;1823:020013. doi:10.1063/1.4978086
Priyanto S, Pramudono B, Kusworo TD, Suherman, Aji HA, Untoro E, Ratu P. Synthesis Study of Surfactants Sodium Ligno Sulphonate (SLS) from Biomass Waste Using Fourier Transform Infra Red (FTIR). MATEC Web Conf. 2018;156:03030. doi:10.1051/matecconf/201815603030
Kubo S, Kadla JF. Kraft lignin/poly(ethylene oxide) blends: Effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci. 2005;98(3):1437–1444. doi:10.1002/app.22245
Shao Y, Guizani C, Grosseau P, Chaussy D, Beneventi D. Thermal characterization and kinetic analysis of microfibrillated cellulose/lignosulfonate blends. J Anal Appl Pyrolysis. 2017;124:25–34. doi:10.1016/j.jaap.2017.03.001
Smith BC. Infrared Spectral Interpretation: A Systematic Approach. CRC Press; 1998.
Prakoso NI, Purwono S, Rochmadi. Synthesis of sodium lignosulphonate from oil palm empty fruit bunches’s lignin. AIP Conf Proc. 2017;1823:020037. doi:10.1063/1.4978110
Loganathan S, Sankaran S. Surface Chemical Studies on Silicon Carbide Suspensions in the Presence of Poly (Ethylene Glycol) and Chitosan. Sci Publ Gr. 2017;2(1):6–20.
Fu X, Kong W, Zhang Y, Jiang L, Wang J, Lei J. Novel solid-solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015;5(84):68881–68889. doi:10.1039/c5ra11842e
Lim ZQ, Aziz NAA, Idris AK, Md Akhir NA. Green Lignosulphonate as cosurfactant for wettability alteration. Pet Res. 2020;5(2):154–163. doi:10.1016/j.ptlrs.2019.12.002
Nakama Y. Surfactants. In: Sakamoto K, Lochhead RY, Maibach HI, Yamashita Y, eds. Cosmetic Science and Technology. Elsevier; 2017:231–244. doi:10.1016/B978-0-12-802005-0.00015-X
Sudarmoyo S, Swadesi B, Andini AN, Siregar S, Kurnia R, Buhari A, Budiaman IGS. Laboratory study: The development of a sodium lignosulfonate (SLS) surfactant formulation for light oil reservoir to improve oil recovery. AIP Conf Proc. 2018;1977:030033. doi:10.1063/1.5042953
Azis MM, Rachmadi H, Wintoko J, Yuliansyah AT, Hasokowati W, Purwono S, Rochmadi W, Murachman B. On the use of sodium lignosulphonate for enhanced oil recovery. IOP Conf Ser Earth Environ Sci. 2017;65(1):012030. doi:10.1088/1755-1315/65/1/012030
Pramudono B, Aji HA, Priyanto S, Kusworo TD, Suherman S, Untoro E, Ratu P. Utilization of biomass waste of pulp and paper industry for production of sodium lignosulphonate (SLS). Nat Environ Pollut Technol. 2018;17(4):1299–1303.
Alli YF, Brioletty L, Eni H, Irawan Y. Co-Surfactant Polyethylene Glycol MonoOleate in the Formulation of Natural Based-Surfactant for Chemical EOR. Sci Contrib Oil Gas. 2017;40(1):1–8.
Moghadasi R, Rostami A, Hemmati-Sarapardeh A. Enhanced Oil Recovery Using CO2. In: Bahadori A, ed. Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs. Elsevier Inc.; 2018:61–99. doi:10.1016/B978-0-12-813027-8.00003-5
Pal S, Mushtaq M, Banat F, Al Sumaiti AM. Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives. Pet Sci. 2018;15(1):77–102. doi:10.1007/s12182-017-0198-6
Bustamante-Rendón RA, Pérez E, Gama Goicochea A. Comparing the efficiency of pure and mixed cationic and nonionic surfactants used in enhanced oil recovery by mesoscopic simulations. Fuel. 2020;277:118287. doi:10.1016/j.fuel.2020.118287
Boyer C, Liu J, Wong L, Tippett M, Bulmus V, Davis TP. Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations. J Polym Sci Part A Polym Chem. 2008;46(21):7207–7224. doi:10.1002/pola.23028
Truong V, Blakey I, Whittaker AK. Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by “click” chemistry. Biomacromolec. 2012;13(12):4012–4021. doi:10.1021/bm3012924
Zhang G, Yu J. Effect of commonly used EOR polymers on low concentration surfactant phase behaviors. Fuel. 2021;286:119465. doi:10.1016/j.fuel.2020.119465
Sheng JJ. Status of surfactant EOR technology. Petroleum. 2015;1(2):97–105. doi:10.1016/j.petlm.2015.07.003
Nguele R, Sasaki K, Salim HS Al, Sugai Y, Widiatmojo A, Nakano M. Microemulsion and phase behavior properties of (Dimeric ammonium surfactant salt - Heavy crude oil - Connate water) system. J Unconv Oil Gas Resour. 2016;14:62–71. doi:10.1016/j.juogr.2016.03.001
Shi Y, Shan G, Shang Y. Role of Poly(ethylene glycol) in Surfactant-Free Emulsion Polymerization of Styrene and Methyl Methacrylate. Langmuir. 2013;29(9):3024–3033. doi:10.1021/la304847a
Bera A, Mandal A. Microemulsions: a novel approach to enhanced oil recovery: a review. J Pet Explor Prod Technol. 2015;5(3):255–268. doi:10.1007/s13202-014-0139-5
Bera A, Kumar T, Ojha K, Mandal A. Screening of microemulsion properties for application in enhanced oil recovery. Fuel. 2014;121:198–207. doi:10.1016/j.fuel.2013.12.051
DOI: https://doi.org/10.15826/chimtech.2022.9.4.06
Copyright (c) 2022 Slamet Priyanto, Ronny W. Sudrajat, Suherman Suherman, Bambang Pramudono, Teguh Riyanto, Desty D. Setianingrum, Alfin A. Pratama
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International