The effect of processing conditions on the dielectric properties of doped calcium lanthanum nickelate
Abstract
Keywords
Full Text:
PDFReferences
Ramirez AP, Subramanian MA, et al. Giant dielectric constant response in a copper-titanate. Solid State Commun. 2000;115(5):217–220. doi:10.1016/S0038-1098(00)00182-4
Jumpatam J, Putasaeng B, et. al. Improved giant dielectric properties of CaCu3Ti4O12 via simultaneously tuning the electrical properties of grains and grain boundaries by F- substitution. RSC Adv. 2017;7(7):4092–4101. doi:10.1039/c6ra27381e
Krohns S, Lunkenheimer P, Loidl A. Colossal dielectric constants in La15/8Sr1/8NiO4. In: Conference on Fundamentals and Technology of Multifunctional Oxide Thin Films; 2009; Strasbourg; FRANCE. doi:10.1088/1757-899x/8/1/012014
Lunkenheimer P, Krohns S, et al. Colossal dielectric constants in transition-metal oxides. Eur Phys J Spec Top. 2010;180:61–89. doi:10.1140/epjst/e2010-01212-5
Erste A, Kuznik B, et al. Dielectric Properties of CaCu3Ti4O12 Ceramic Thin Films. Ferroelectr. 2011;419:14–19. doi:10.1080/00150193.2011.594405
Chupakhina TI, Mel'nikova NV, et al. La1.8Sr0.2Ni0.8M0.2O4 (M = Fe, Co, or Cu) complex oxides: synthesis, structural characterization, and dielectric properties. Russ J Inorg Chem. 2018;63(2):141–148. doi:10.1134/s0036023618020043
Chupakhina TI, Melnikova NV, et al. Synthesis, structure, magnetic behavior and dielectric relaxation of the LaxSr2–xFexTi1–xO4 (x = 0.5, 0.7) oxide ceramic. J Solid State Chem. 2020;292:121687(1–12). doi:10.1016/j.jssc.2020.121687
Rahman Ab, Abu MJ, et al. Effect of Calcination Temperature on Dielectric Properties of CaCu3Ti4O12 Ceramics. In: 5th International Conference on Recent Advances in Materials, Minerals and Environment; Ramm. 2016;19:910–915. doi:10.1016/j.proche.2016.03.134
Krohns S, Lunkenheimer P, et al. Colossal dielectric constant up to gigahertz at room temperature. Appl Phys Lett. 2009;94(12):3. doi:10.1063/1.3105993
Deeva YA, Chupakhina TI, et al. Dielectric properties of new oxide phases Ln0.65Sr1.35Co0.5Ti0.5O4 (Ln = La, Nd, Pr) with the K2NiF4 - type structure. Ceram Int. 2020;46(10):15305–15313. doi:10.1016/j.ceramint.2020.03.071
Liu XQ, Wu YJ, et al. Temperature-stable giant dielectric response in orthorhombic samarium strontium nickelate ceramics. J Appl Phys. 2009;105(5):4. doi:10.1063/1.3082034
Jia BW, Liu XQ, Chen XM. Structure, magnetic and dielectric properties in Mn-substituted Sm1.5Sr0.5NiO4 ceramics. J Appl Phys. 2011;110(6):7. doi:10.1063/1.3639282
Takeda Y, Kanno R. Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1.6). Mater Res Bull. 1990;25(3):293–306. doi:10.1016/0025-5408(90)90100-G
Vashooka V, Girdauskaite E, et al. Oxygen non-stoichiometry and electrical conductivity of Pr2−xSrxNiO4±δ with x = 0–0.5. Solid State Ionics.2006;177(13):1163–1171. doi:10.1016/j.ssi.2006.05.018
Oliveira RMPB, Pimentel PM, et al. Microstructural study of neodmium nickelate doped with strontium synthesized by gelatin method. Adv Mater Sci Eng 2013;2013:926540. doi:10.1155/2013/926540
Jia BW, Yang WZ et al. Giant dielectric response in (Sm1–xNdx)(1.5)Sr0.5NiO4 ceramics: The intrinsic and extrinsic effects. J Appl Phys. 2012;112(2):7. doi:10.1063/1.4737775
Shi CY, Hu ZB, Hao YM. Structural, magnetic and dielectric properties of La2–xCaxNiO4+δ (x=0, 0 1, 0 2, 0 3). J Alloys Compd. 2011;509(4):1333–1337. doi:10.1016/j.jallcom.2010.10.030
Nirala G, Yadav D, Upadhyay S. Ruddlesden-Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties. J Adv Ceram. 2020;9(2):129–148. doi:10.1007/s40145-020-0365-x
Chupakhina TI, Melnikova NV, et al. Synthesis, structure and dielectric properties of new ceramics with K2NiF4-type structure. J Eur Ceram Soc. 2019;39(13):3722–3729. doi:10.1016/j.jeurceramsoc.2019.05.018
Lou X, Weng WJ, et al. The effects of incomplete combustion on Ba2Ti9O20 phase formation in a citrate solution combustion method. Ceram Int. 2009;35(5):1725–1729. doi:10.1016/j.ceramint.2008.09.013
Lee MK, Kang S. A study of salt-assisted solution combustion synthesis of magnesium aluminate and sintering behaviour. Ceram Int. 2019;45(6):6665–6672. doi:10.1016/j.ceramint.2018.12.155
Montoya JF, Chavarriaga EA, et al. ZnFe2–xCrxO4 ferrites (x=0.0-2.0) by solution-combustion synthesis using glycine as a fuel: influence of Cr3+ doping. Int J Self Propag High Temp Synth. 2020;29(4):243–245. doi:10.3103/s1061386220040081
Chupakhina TI, Gyrdasova OI, et al. New ways to synthesize multifunctional ceramics La2–xSrxNiO4. Russ J Inorg Chem. 2015;60(10):1184–1192. doi:10.1134/s0036023615100058
Boehm E, Bassat J-M et al. Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 2003;5(7):973–981. doi:10.1016/S1293-2558(03)00091-8
Tarutin AP, Lyagaeva JG, et al. Cu-substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells. Ceram Int. 2019;45(13):16105–16112. doi:10.1016/j.ceramint.2019.05.127
Filonova EA, Pikalova EYu, et al. Crystal structure and functional properties of Nd1.6Ca0.4Ni1–yCuyO4+δ as prospective cathode materials for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy. 2021;46(32):17037–17050. doi:10.1016/j.ijhydene.2020.10.243
Kadyrova NI, Mel’nikova NV, et al. Effect of high pressures and temperatures on the structure and properties of CaCu3Ti4O12. 2016;52:1051–1054. doi:10.1134/S0020168516100083
Chupakhina TI, Deeva YA, et al. Synthesis, structure and dielectric properties of new oxide compounds Ln1–xSr1+xCux/2Ti1–x/2O4 (Ln = La, Pr, Nd) belonging to the structural type of K2NiF4. Mendeleev Commun. 2019;29(3):349–351. doi:10.1016/j.mencom.2019.05.037
Fan XC, Chen XM, Liu XQ. Structural dependence of microwave dlielectric properties of SrRAIO4 (R = Sm, Nd, La) ceramics: Crystal structure refinement and infrared reflectivity study. Chem Mater. 2008;20(12):4092–4098. doi:10.1021/cm703273z
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallograph Sec A. 1976;32(5):751–767. doi:10.1107/S0567739476001551
Goncharov VS, Ryzhkovskii VM. Thermobaric treatment induced changes in the structure and magnetic properties of manganese antimonide. Techn Phys Lett. 2001;27(7):546–547. doi:10.1134/1.1388938
Vasala S, Karppinen M. A2B'B''O6 perovskites: A review. Prog Solid State Chem. 2015;43(1–2):1–36. doi:10.1016/j.progsolidstchem.2014.08.001
Lombardo SJ, Shende RV, Krueger DS. The effect of processing conditions on the porosity and electrical properties of IBLC materials. Ceram Mater Multilayer Electron Devices. 2003;150:43–51. doi:10.1016/j.ceramint.2013.08.123
Salame P, Drai R et al. IBLC effect leading to colossal dielectric constant in layered structured Eu2CuO4 ceramic. Ceram Int. 2014;40(3):4491–4498. doi:10.1016/j.ceramint.2013.08.123
DOI: https://doi.org/10.15826/chimtech.2022.9.4.10
Copyright (c) 2022 Yulia A. Deeva, Abdullo A. Mirzorakhimov, Alexey Yu. Suntsov, Nadezhda I. Kadyrova, Nina V. Melnikova, Tatyana I. Chupakhina
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International