Cover Image

The effect of processing conditions on the dielectric properties of doped calcium lanthanum nickelate

Yulia A. Deeva, Abdullo A. Mirzorakhimov, Alexey Yu. Suntsov, Nadezhda I. Kadyrova, Nina V. Melnikova, Tatyana I. Chupakhina

Abstract


The influence of thermal and thermobaric (TBT) effects on the structure, microstructure, and dielectric properties of ceramics based on solid solutions of the La1.8Ca0.2Ni0.8M0.2O4+δ (M = Co, Cu) composition was studied. TBT treatment of the samples leads to a change in the grain morphology of ceramics and an increase in the dielectric constant compared to its value only after heat treatment. The change in the anisotropy of the coordination (La,Ca)O9 and (Ni,M)O6 polyhedra after TBT contributed to interlayer polarization in the crystal structure of La1.8Ca0.2Ni0.8M0.2O4+δ.

Keywords


ceramics; solution combustion; thermobaric treatment; impedance spectroscopy; dielectric response

Full Text:

PDF

References


Ramirez AP, Subramanian MA, et al. Giant dielectric constant response in a copper-titanate. Solid State Commun. 2000;115(5):217–220. doi:10.1016/S0038-1098(00)00182-4

Jumpatam J, Putasaeng B, et. al. Improved giant dielectric properties of CaCu3Ti4O12 via simultaneously tuning the electrical properties of grains and grain boundaries by F- substitution. RSC Adv. 2017;7(7):4092–4101. doi:10.1039/c6ra27381e

Krohns S, Lunkenheimer P, Loidl A. Colossal dielectric constants in La15/8Sr1/8NiO4. In: Conference on Fundamentals and Technology of Multifunctional Oxide Thin Films; 2009; Strasbourg; FRANCE. doi:10.1088/1757-899x/8/1/012014

Lunkenheimer P, Krohns S, et al. Colossal dielectric constants in transition-metal oxides. Eur Phys J Spec Top. 2010;180:61–89. doi:10.1140/epjst/e2010-01212-5

Erste A, Kuznik B, et al. Dielectric Properties of CaCu3Ti4O12 Ceramic Thin Films. Ferroelectr. 2011;419:14–19. doi:10.1080/00150193.2011.594405

Chupakhina TI, Mel'nikova NV, et al. La1.8Sr0.2Ni0.8M0.2O4 (M = Fe, Co, or Cu) complex oxides: synthesis, structural characterization, and dielectric properties. Russ J Inorg Chem. 2018;63(2):141–148. doi:10.1134/s0036023618020043

Chupakhina TI, Melnikova NV, et al. Synthesis, structure, magnetic behavior and dielectric relaxation of the LaxSr2–xFexTi1–xO4 (x = 0.5, 0.7) oxide ceramic. J Solid State Chem. 2020;292:121687(1–12). doi:10.1016/j.jssc.2020.121687

Rahman Ab, Abu MJ, et al. Effect of Calcination Temperature on Dielectric Properties of CaCu3Ti4O12 Ceramics. In: 5th International Conference on Recent Advances in Materials, Minerals and Environment; Ramm. 2016;19:910–915. doi:10.1016/j.proche.2016.03.134

Krohns S, Lunkenheimer P, et al. Colossal dielectric constant up to gigahertz at room temperature. Appl Phys Lett. 2009;94(12):3. doi:10.1063/1.3105993

Deeva YA, Chupakhina TI, et al. Dielectric properties of new oxide phases Ln0.65Sr1.35Co0.5Ti0.5O4 (Ln = La, Nd, Pr) with the K2NiF4 - type structure. Ceram Int. 2020;46(10):15305–15313. doi:10.1016/j.ceramint.2020.03.071

Liu XQ, Wu YJ, et al. Temperature-stable giant dielectric response in orthorhombic samarium strontium nickelate ceramics. J Appl Phys. 2009;105(5):4. doi:10.1063/1.3082034

Jia BW, Liu XQ, Chen XM. Structure, magnetic and dielectric properties in Mn-substituted Sm1.5Sr0.5NiO4 ceramics. J Appl Phys. 2011;110(6):7. doi:10.1063/1.3639282

Takeda Y, Kanno R. Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1.6). Mater Res Bull. 1990;25(3):293–306. doi:10.1016/0025-5408(90)90100-G

Vashooka V, Girdauskaite E, et al. Oxygen non-stoichiometry and electrical conductivity of Pr2−xSrxNiO4±δ with x = 0–0.5. Solid State Ionics.2006;177(13):1163–1171. doi:10.1016/j.ssi.2006.05.018

Oliveira RMPB, Pimentel PM, et al. Microstructural study of neodmium nickelate doped with strontium synthesized by gelatin method. Adv Mater Sci Eng 2013;2013:926540. doi:10.1155/2013/926540

Jia BW, Yang WZ et al. Giant dielectric response in (Sm1–xNdx)(1.5)Sr0.5NiO4 ceramics: The intrinsic and extrinsic effects. J Appl Phys. 2012;112(2):7. doi:10.1063/1.4737775

Shi CY, Hu ZB, Hao YM. Structural, magnetic and dielectric properties of La2–xCaxNiO4+δ (x=0, 0 1, 0 2, 0 3). J Alloys Compd. 2011;509(4):1333–1337. doi:10.1016/j.jallcom.2010.10.030

Nirala G, Yadav D, Upadhyay S. Ruddlesden-Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties. J Adv Ceram. 2020;9(2):129–148. doi:10.1007/s40145-020-0365-x

Chupakhina TI, Melnikova NV, et al. Synthesis, structure and dielectric properties of new ceramics with K2NiF4-type structure. J Eur Ceram Soc. 2019;39(13):3722–3729. doi:10.1016/j.jeurceramsoc.2019.05.018

Lou X, Weng WJ, et al. The effects of incomplete combustion on Ba2Ti9O20 phase formation in a citrate solution combustion method. Ceram Int. 2009;35(5):1725–1729. doi:10.1016/j.ceramint.2008.09.013

Lee MK, Kang S. A study of salt-assisted solution combustion synthesis of magnesium aluminate and sintering behaviour. Ceram Int. 2019;45(6):6665–6672. doi:10.1016/j.ceramint.2018.12.155

Montoya JF, Chavarriaga EA, et al. ZnFe2–xCrxO4 ferrites (x=0.0-2.0) by solution-combustion synthesis using glycine as a fuel: influence of Cr3+ doping. Int J Self Propag High Temp Synth. 2020;29(4):243–245. doi:10.3103/s1061386220040081

Chupakhina TI, Gyrdasova OI, et al. New ways to synthesize multifunctional ceramics La2–xSrxNiO4. Russ J Inorg Chem. 2015;60(10):1184–1192. doi:10.1134/s0036023615100058

Boehm E, Bassat J-M et al. Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 2003;5(7):973–981. doi:10.1016/S1293-2558(03)00091-8

Tarutin AP, Lyagaeva JG, et al. Cu-substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells. Ceram Int. 2019;45(13):16105–16112. doi:10.1016/j.ceramint.2019.05.127

Filonova EA, Pikalova EYu, et al. Crystal structure and functional properties of Nd1.6Ca0.4Ni1–yCuyO4+δ as prospective cathode materials for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy. 2021;46(32):17037–17050. doi:10.1016/j.ijhydene.2020.10.243

Kadyrova NI, Mel’nikova NV, et al. Effect of high pressures and temperatures on the structure and properties of CaCu3Ti4O12. 2016;52:1051–1054. doi:10.1134/S0020168516100083

Chupakhina TI, Deeva YA, et al. Synthesis, structure and dielectric properties of new oxide compounds Ln1–xSr1+xCux/2Ti1–x/2O4 (Ln = La, Pr, Nd) belonging to the structural type of K2NiF4. Mendeleev Commun. 2019;29(3):349–351. doi:10.1016/j.mencom.2019.05.037

Fan XC, Chen XM, Liu XQ. Structural dependence of microwave dlielectric properties of SrRAIO4 (R = Sm, Nd, La) ceramics: Crystal structure refinement and infrared reflectivity study. Chem Mater. 2008;20(12):4092–4098. doi:10.1021/cm703273z

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallograph Sec A. 1976;32(5):751–767. doi:10.1107/S0567739476001551

Goncharov VS, Ryzhkovskii VM. Thermobaric treatment induced changes in the structure and magnetic properties of manganese antimonide. Techn Phys Lett. 2001;27(7):546–547. doi:10.1134/1.1388938

Vasala S, Karppinen M. A2B'B''O6 perovskites: A review. Prog Solid State Chem. 2015;43(1–2):1–36. doi:10.1016/j.progsolidstchem.2014.08.001

Lombardo SJ, Shende RV, Krueger DS. The effect of processing conditions on the porosity and electrical properties of IBLC materials. Ceram Mater Multilayer Electron Devices. 2003;150:43–51. doi:10.1016/j.ceramint.2013.08.123

Salame P, Drai R et al. IBLC effect leading to colossal dielectric constant in layered structured Eu2CuO4 ceramic. Ceram Int. 2014;40(3):4491–4498. doi:10.1016/j.ceramint.2013.08.123




DOI: https://doi.org/10.15826/chimtech.2022.9.4.10

Copyright (c) 2022 Yulia A. Deeva, Abdullo A. Mirzorakhimov, Alexey Yu. Suntsov, Nadezhda I. Kadyrova, Nina V. Melnikova, Tatyana I. Chupakhina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice