Cover Image

Titanium dioxide - activated carbon composite for photoelectrochemical degradation of phenol

L. H. Q. Anh, Uyen P. N. Tran, P. V. G. Nghi, H. T. Le, N. T. B. Khuyen, T. D. Hai

Abstract


In this study, titanium dioxide (TiO2) and titanium dioxide – activated carbon composite (TiO2–AC) were prepared by sol-gel method for photoelectrochemical (PEC) applications. Characterization of the materials was performed by scanning electron microscope, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and diffuse reflectance spectroscopy. The results show that TiO2 was successfully loaded on activated carbon (AC), producing TiO2–AC with 2.61 eV of bandgap energy, lower than that of TiO2 (3.15 eV). Photoanodes based on TiO2 and TiO2–AC were fabricated and applied to PEC experiments for phenol degradation. In comparison with the TiO2 photoanode, the TiO2–AC one exhibited superior photocatalytic activity, which was indicated by a high current density and effective phenol removal. A mechanism of phenol PEC degradation on the TiO2–AC photoanode was proposed, which includes interaction between protonated phenol and active sites bearing oxygen on the photoanode surface. A kinetic model according to this mechanism was also established and fitted to experimental findings, resulting in rate constants of elementary reactions.

Keywords


photoelectrochemical; titanium dioxide; phenol degradation; photocatalyst; kinetic model

Full Text:

PDF

References


Albuquerque BR, Heleno SA, et al. Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct. 2021;12(1):14–29. doi:10.1039/D0FO02324H

Xu N, Qiu C, et al. Analysis of phenol biodegradation in antibiotic and heavy metal resistant Acinetobacter lwoffii NL1. Front. Microbiol. 2021;12:725755. doi:10.3389/fmicb.2021.725755

Pardeshi SK, Patil AB. A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension us-ing solar energy. Sol Energy. 2008;82(8):700–705. doi:10.1016/j.solener.2008.02.007

Gupta S, Ashrith G, et al. Acute phenol poisoning: A life-threatening hazard of chronic pain relief. Clin. Toxicol. 2008;46(3):250–253. doi:10.1080/15563650701438888

Kim HY, Kim OH, Sung MK. Effects of phenol-depleted and phenol-rich diets on blood markers of oxidative stress, and urinary excretion of quercetin and kaempferol in healthy volunteers. J Am Coll Nutr. 2003;22(3):217–223. doi:10.1080/07315724.2003.10719296

Villegas LGC, Mashhadi N, et al. A short review of tech-niques for phenol removal from wastewater. Curr Pollution Rep. 2016;2:157–167. doi:10.1007/s40726-016-0035-3

Li H, Yao Y, et al. Degradation of phenol by photocatalysis using TiO2/montmorillonite composites under UV light. Environ Sci Pollut Res. 2022. doi:10.1007/s11356-022-20638-8

Iervolino G, Zammit I, et al. Limitations and prospects for wastewater treatment by UV and visible-light-active heter-ogeneous photocatalysis: A critical review. Top Curr Chem (Z). 2020;378:7. doi:10.1007/s41061-019-0272-1

Li C, Wang WD. Photocatalytic degradation of phenol over MWCNTs-TiO2 composite catalysts with different diame-ters. Chin J Chem Phys. 2009;22(4):423–428. doi:10.1088/1674-0068/22/04/423-428

Velasco LF, Parra JB, Ania CO. Role of activated carbon fea-tures on the photocatalytic degradation of phenol. Appl Surf Sci. 2010;256(17):5254–5258. doi:10.1016/j.apsusc.2009.12.113

Malekshoar G, Pal K, et al. Enhanced solar photocatalytic degradation of phenol with coupled graphene-based titani-um dioxide and zinc oxide. Ind Eng Chem Res. 2014;53(49):18824–18832. doi:10.1021/ie501673v

Yao S, Li J, Shi Z. Immobilization of TiO2 nanoparticles on activated carbon fiber and its photodegradation perfor-mance for organic pollutants. Particuol. 2010;8(3):272–278. doi:10.1016/j.partic.2010.03.013

Nkwachukwu OV, Muzenda C, et al. Photoelectrochemical degradation of organic pollutants on a La3+ doped BiFeO3 perovskite. Catalysts. 2021;11(9):1069. doi:10.3390/catal11091069

Mukherjee A. Chakrabarty S, et al. Visible-light-mediated electrocatalytic activity in reduced graphene oxide-supported bismuth ferrite. ACS Omega. 2018;3(6):5946–5957. doi:10.1021/acsomega.8b00708

Bard AJ. Photoelectrochemistry. Sci. 1980;207(4427):139–144. doi:10.1126/science.207.4427.139

Barham JP, Köning B. Synthetic photoelectrochemistry. Angew Chem Int Ed. 2020;59:11732–11747.doi:10.1002/anie.201913767

Marwat MA, Humayun M, et al. Advanced catalysts for pho-toelectrochemical water splitting. ACS Appl Energy Mater. 2021;4(11):12007–12031. doi:10.1021/acsaem.1c02548

Villota-Zuleta JA, Rodríguez-Acosta, et al. Experimental data on the photoelectrochemical oxidation of phenol: Analysis of pH, potential and initial concentration. Data Brief. 2019;24:103949. doi:10.1016/j.dib.2019.103949

Liu S, Zhao X, et al. Peroxymonosulfate enhanced photoe-lectrocatalytic degradation of phenol activated by Co3O4 loaded carbon fiber cathode. J Catal. 2017;355:167–175. doi:10.1016/j.jcat.2017.09.016

Haro M, Velasco LF, Ania CO. Carbon-mediated photoin-duced reactions as a key factor in the photocatalytic per-formance of C/TiO2. Catal Sci Technol. 2012;2:2264–2272. doi:10.1039/C2CY20270K

Singh P, Singh R, et al. Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy Ecol Environ. 2016;1:131–140. doi:10.1007/s40974-016-0009-8

Xing B, Shi C, et al. Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J Nanomater. 2016;2016:8393648. doi:10.1155/2016/8393648

Haider A, Jameel ZN, Taha SY. Synthesis and characteriza-tion of TiO2 nanoparticles via sol-gel method by pulse laser ablation. In: The 5th International scientific Conference on Nanotechnology & Advanced Materials Their Applications; 2015 Nov 3–4; Baghdad, Iraq. p. 761–771.

Arabi-Katbi OI, Pratsins SE, et al. Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling. Combust Flame. 2001;124(4):560–572. doi:10.1016/S0010-2180(00)00227-3

Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46:855–874. doi:10.1007/s10853-010-5113-0

Kusiak-Nejman E, Wanag A, et al. Modification of titanium dioxide with graphitic carbon from anthracene thermal de-composition as a promising method for visible-active pho-tocatalysts preparation. J Adv Oxid Technol. 2016;19(2):227–235. doi:10.1515/jaots-2016-0206

Luttrell T, Halegamage S, et al. Why is anatase a better photocatalyst than rutile? – Model studies on epitaxial TiO2 films. Sci Rep. 2014;4:4043. doi:10.1038/srep04043

Liu Z, Jian Z, et al. Low-temperature reverse microemul-sion synthesis, characterization, and photocatalytic per-formance of nanocrystalline titanium dioxide. Int J Photo-energy. 2012;2012:702503. doi:10.1155/2012/702503

Zhang H, Wang X, et al. Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv. 2018;8:34241–34251. doi:10.1039/C8RA06681G

Muhammad AS, Naser JT, et al. Photocatalytic degradation of methylene blue and phenol using TiO2/activated-carbon composite catalysts. Asian J Chem. 2015;27(1): 343–348. doi:10.14233/ajchem.2015.17936

Greco G, Mazzio KA, et al. Structural study of carbon-coated TiO2 anatase nanoparticles as high-performance anode ma-terials for Na-Ion batteries. ACS Appl Energy Mater. 2019;2(10):7142–7151. doi:10.1021/acsaem.9b01101

Wang H, Xia Y, et al. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting. Nat Commun. 2020;11:3078. doi:10.1038/s41467-020-16800-w

Doménech-Carbó A, Doménech-Carbó MT, Costa V. Electro-chemical Methods in Archaeometry, Conservation and Res-toration. Springer-Verlag Berlin Heidelberg: New York; 2009. 199 p.

Jung H, Chae SY, et al. Effect of the Si/TiO2/BiVO4 hetero-junction on the onset potential of photocurrents for solar water oxidation. ACS Appl Mater Interfaces. 2015;7(10):5788–5796. doi:10.1021/am5086484

Bertolizzi L, Bisquert J. Equivalent circuit of electrons and holes in thin semiconductor films for photoelectrochemical water splitting applications. J Phys Chem Lett. 2012;3(17):2517–2522. doi:10.1021/jz3010909

Qu J, Li GR, Gao XP. One-dimensional hierarchical titania for fast reaction kinetics of photoanode materials of dye-sensitized solar cells. Energy Environ Sci. 2010;3:2003–2009. doi:10.1039/C003646C

Sun Y, Yan KP. Effect of anodization voltage on perfor-mance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell. Int J Hydrog Energy. 2014;22:11368–11375. doi:10.1016/j.ijhydene.2014.05.115

Grabowska E, Reszczyńska J, Zaleska. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review. Water Res. 2012;46(17):5453–5471. doi:10.1016/j.watres.2012.07.048

Mohamed A, Yousef S, et al. Rapid photocatalytic degrada-tion of phenol from water using composite nanofibers un-der UV. Environ Sci Eur. 2020;32:160.doi:10.1186/s12302-020-00436-0

Orudzhevz FF, Aliev ZM, et al. Photoelectrocatalytic oxida-tion of phenol on TiO2 nanotubes under oxygen pressure. Russ J Electrochem. 2015;51(12):1108–1114. doi:10.1134/S1023193515110130

Asenjo NG, Santamaría, et al. Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a sus-pended mixture of titania and activated carbon. Carbon. 2013;55:62–69. doi:10.1016/j.carbon.2012.12.010

Zamri MSFA, Sapwe N. Kinetic study on photocatalytic deg-radation of phenol using green electrosynthesized TiO2 na-noparticles. Materialstoday: Proceedings. 2019;19(4):1261–1266. doi:10.1016/j.matpr.2019.11.131

Alalm MG, Tawfik A, Ookawara S. Solar photocatalytic deg-radation of phenol by TiO2/AC prepared by temperature impregnation method. Desalination Water Treat. 2016;57(2):835–844. doi:10.1080/19443994.2014.969319

Prabha I, Lathasree S. Photodegradation of phenol by zinc oxide, titania and zinc oxide–titania composites: Nanopar-ticle synthesis, characterization and comparative photo-catalytic efficiencies. Mater Sci Semicond Process. 2014;26:603–613. doi:10.1016/j.mssp.2014.05.031

Thabet M, El-Zomrawy AA. Degradation of acid red 17 dye with ammonium persulphate in acidic solution using pho-toelectrocatalytic methods. Arab J Chem. 2016;9:S204–S208. doi:10.1016/j.arabjc.2011.03.001

Duan X, Ma F, et al. Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J Taiwan Inst Chem Eng. 2013;44:95–102. doi:10.1016/j.jtice.2012.08.009

Neumann-Spallart M, Shinde SS, et al. Photoelectrochemi-cal degradation of selected aromatic molecules. Electro-chim Acta. 2013;111:830–836. doi:10.1016/j.electacta.2013.08.080

Katada M, Fujii A. Infrared spectroscopy of protonated phe-nol–water clusters. J Phys Chem A. 2018;122(27):5822–5831. doi:10.1021/acs.jpca.8b04446

Granucci G, Hynes JT, et al. A theoretical investigation of excited-state acidity of phenol and cyanophenols. J Am Chem Soc. 2000;122(49):12243–12253. doi:10.1021/ja993730j

Balaska A, Samar ME, Grid A. Phenol photodegradation process assisted with Wells–Dawson heteropolyacids. De-salination Water Treat. 2015;54(2):382–392. doi:10.1080/19443994.2014.883577

Dubale AA, Ahmed IN, et al. A highly stable metal–organic framework derived phosphorus doped carbon/Cu2O struc-ture for efficient photocatalytic phenol degradation and hydrogen production. J Mater Chem A. 2019;7:6062–6079. doi:10.1039/C8TA12544A




DOI: https://doi.org/10.15826/chimtech.2022.9.4.16

Copyright (c) 2022 L. H. Q. Anh, Uyen P. N. Tran, P. V. G. Nghi, H. T. Le, N. T. B. Khuyen, T. D. Hai

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)
Copyright Notice