Cover Image

Novel Nb5+-doped hexagonal perovskite Ba5In2Al2ZrO13 (structure, hydration, electrical conductivity)

Roman D. Andreev, Daniil V. Korona, Irina A. Anokhina, Irina E. Animitsa

Abstract


The new phase Ba5In2Al2Zr0.9Nb0.1O13.05 with hexagonal perovskite structure was obtained. The substitution of Zr4+ by smaller Nb5+ was accompanied by the incorporation of the oxygen interstitials and did not lead to a significant change in the lattice parameters. It was established that the investigated sample was capable for water incorporation from the gas phase, the hydration degree value was 0.24 mol H2O. IR-spectroscopy analysis defined the presence of
OH-groups with different thermal stability, which participate in different hydrogen bonds. The new phase Ba5In2Al2Zr0.9Nb0.1O13.05 demonstrates the predominant protonic conductivity at pH2O = 2·10−2 atm and Т<600 °C.

Keywords


hexagonal perovskite; proton conductivity; hydration; transport properties

Full Text:

PDF

References


Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applica-tions: structural and mechanistic features. Chem Soc Rev. 2010;39:4370–4387. doi:10.1039/B915141A

Mengfei Z, Georgina J, Peimiao Z, Rong L, Mingtai W, Huanting W, Shanwen T. Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Ma-ter Today. 2021;49:351–377. doi:10.1016/j.mattod.2021.05.004

Mauro C, Maths K, Lorenzo M. Structure–property correla-tion in oxide-ion and proton conductors for clean energy applications: recent experimental and computational ad-vancements. J Mater Chem A. 2022;10:5082–5110. doi:10.1039/d1ta10326a

Ashish K, Ajay K, Venkata K. Perovskite oxide based materi-als for energy and environment- oriented photocatalysis. ACS Catal. 2020;10(17):10253–10315. doi:10.1021/acscatal.0c02947

Tatsumi I. Inorganic perovskite oxides. Springer Handbook of Electronic and Photonic Materials. Springer Internation-al Publishing: Germany; 2017. 1572 p.

Wan-Jian Y, Baicheng W, Jie G, Qingde S, Zhenzhu L, Yanfa Y. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ Sci. 2019;12:442–462. doi:10.1039/c8ee01574k

Medvedev D. Trends in research and development of pro-tonic ceramic electrolysis cells. Int J Hydrog Energy. 2019;44:26711–26740. doi:10.1016/j.ijhydene.2019.08.130

King G, Woodward PMJ. Cation ordering in perovskites. Mater Chem. 2010;20:5785–5796. doi:10.1039/B926757C

Animitsa I. Double perovskites with structure-disordered oxygen sublattice as high-temperature proton conductors. In Perovskites: Structure, Properties and Uses. Nova Sci-ence Publishers, Inc.: USA; 2010. p. 501–524.

Murugaraj P, Kreuer K, He T, Schober T, Maier J. High pro-ton conductivity in barium yttrium stannate Ba2YSnO5.5. Solid State Ion. 1997;98:1–6. doi:10.1016/S0167-2738(97)00102-1

Baliteau S, Mauvy F, Fourcade S, Grenier J. Investigation on double perovskite Ba4Ca2Ta2O11. Solid State Sci. 2009;11:1572–1575. doi:10.1016/j.solidstatesciences.2009.06.023

Jalarvo N, Haavik C, Kongshaug C, Norby P, Norby T. Con-ductivity and water uptake of Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O. Solid State Ion. 2009;180:1151–1156. doi:10.1016/j.ssi.2009.05.021

Gurudeo N, Dharmendra Y, Shail U. Ruddlesden–Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties. J Adv Ceram. 2020;9(2):29–148. doi:10.1007/s40145-020-0365-x

Hayden AE, Lingling M, Ram S, Anthony KC. Layered double perovskites. Annu Rev Mater Res. 2021;51:1–33. doi:10.1146/annurev-matsci-092320-102133

Armstrong AR, Anderson PA. Synthesis and structure of a new layered niobium blue bronze: Rb2LaNb2O7. Inorg Chem. 1994;33(19):4366–4369. doi:10.1021/ic00097a026

Le Berre F, Crosnier-Lopez MP, Fourque, JL. Cationic order-ing in the new layered perovskite BaSrTa2O7. Solid State Sci. 2004;6(1):53–59. doi:10.1016/j.solidstatesciences.2003.10.008

Fop S, McCombie K, Wildman E, Skakle J, Irvine J, Connor P, Savaniu C, Ritter C, Mclaughlin A. High oxide ion and pro-ton conductivity in a disordered hexagonal perovskite. Nat Mater. 2020;19:752–757. doi:10.1038/s41563-020-0629-4

Fop S, Dawson J, Fortes A, Ritter C, McLaughlin A. Hydra-tion and ionic conduction mechanisms of hexagonal perov-skite derivatives. Chem Mater. 2021;33:4651–4660. doi:10.1021/acs.chemmater.1c01141

Murakami T, Hester J, Yashima M. High proton conductivity in Ba5Er2Al2ZrO13, a hexagonal perovskite-related oxide with intrinsically oxygen-deficient layers. J Am Chem Soc. 2020;142:11653–11657. doi:10.1021/jacs.0c02403

Andreev R, Korona D, Anokhina I, Animitsa I. Proton and oxygen-ion conductivities of hexagonal perovskite Ba5In2Al2ZrO13. Mater. 2022;15(11):3944. doi:10.3390/ma15113944

Shpanchenko R, Abakumov A, Antipov E, Kovba L. Crystal structure of Ba5In2Al2ZrO13. J Alloy Compd. 1994;206:185–188. doi:10.1016/0925-8388(94)90033-7

Yashima M, Tsujiguchi T, Sakuda Y, Yasui Y, Zhou Y, Fujii K, Torii Sh, Kamiyama T, Skinner SJ. High oxide-ion con-ductivity through the interstitial oxygen site in Ba7Nb4MoO20-based hexagonal perovskite related oxides. Nat Commun. 2021;12(1):1–7. doi:10.1038/s41467-020-20859-w

Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogeni-des. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr. 1976;32:751–767. doi:10.1107/S0567739476001551

Stotz S, Wagner C. Die Loslichkeit von Wasserdampf und Wasserstoff in Festen Oxiden. Ber Bunsenges Phys Chem. 1967;70(8):781–788. doi:10.1002/bbpc.19660700804

Lasia A. Electrochemical Impedance Spectroscopy and Its Applications. Modern Aspects of Electrochemistry. Spring-er: New York, USA; 2014. p. 143–258.

Irvine J, Sinclair D, West A. Electroceramics: Characteriza-tion by Impedance Spectroscopy. Adv Mater. 1990;2:132–138. doi:10.1002/adma.19900020304

Tarasova N, Animitsa I. Аnionic doping (F−, Cl−) as the method for improving transport properties of proton-conducting perovskites based on Ba2CaNbO5.5. Solid State Ion. 2018;317:21–25. doi:10.1016/j.ssi.2018.01.001




DOI: https://doi.org/10.15826/chimtech.2022.9.4.14

Copyright (c) 2022 Roman D. Andreev, Daniil V. Korona, Irina A. Anokhina, Irina E. Animitsa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)
Copyright Notice