Cover Image

Corrosion of diffusion zinc coatings in sodium chloride solutions

Alexander I. Biryukov, Dmitry A. Zakharyevich, Tatyana V. Batmanova, Rashit G. Galin, Maksim N. Ulyanov, Vladimir E. Zhivulin

Abstract


Diffusion galvanizing is widely used in the pipe industry for coating the threaded surface of pipe couplings, protecting water and gas pipelines, and other metal products. Diffusion coatings have a number of advantages over other types of zinc coatings. In this work, electrochemical and gravimetric methods are used to study the corrosion behavior of diffusion zinc coatings in sodium chloride solutions. The corrosion rate depends non-linearly on the thickness of the coating. At the initial stages, the corrosion rate of coatings depends on the structure of the phases on the surface, and with an increase in the holding time, the corrosion rate depends to a greater extent on the properties of the products formed during the corrosion process. Films of corrosion products of diffusion zinc coatings consist of zinc oxide/hydroxide and basic zinc salts, while the composition of the film changes with increasing coating thickness.

Keywords


corrosion; sherardizing; zinc; coatings

Full Text:

PDF

References


Marder AR. The metallurgy of zinc-coated steel. Prog Mater Sci. 2000;45(3):191–271. doi:10.1016/S0079-6425(98)00006-1

Zhang XG. Corrosion and electrochemistry of zinc. New York: Springer Science & Business Media; 2013. 474 p.

Zhang XG, Leygraf C, Wallinder IO. Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments. Corros Sci. 2013;73:62–71. doi:10.1016/j.corsci.2013.03.025

Duchoslav J, Steinberger R, Arndt M, Keppert T, Luckeneder G, Stellnberger KH, Hagler J, Angeli G, Riener CK, Stifter D. Evolution of the surface chemistry of hot dip galvanized Zn–Mg–Al and Zn coatings on steel during short term exposure to sodium chloride containing environments. Corros Sci. 2015;91:311–320. doi:10.1016/j.corsci.2014.11.033

Zhang XG, Wallinder IO, Leygraf C. Atmospheric corrosion of Zn–Al coatings in a simulated automotive environment. Surf Eng. 2017;34(9):1–8. doi:10.1080/02670844.2017.1305658

Peng S, Xie SK, Lu JT, Zhang LC. Surface characteristics and corrosion resistance of spangle on hot-dip galvanized coating. J Alloys Compd. 2017;728:1002–1008. doi:10.1016/j.jallcom.2017.09.091

Zhang XG. Galvanic corrosion of zinc and its alloys. J Electrochem Soc. 1996;143:1472–1484. doi:10.1149/1.1836662

Neufeld AK, Cole IS, Bond AM, Furman SA. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition. Corros Sci. 2002;44:555–572. doi:10.1016/S0010-938X(01)00056-7

Prosek T, Hagström J, Persson D, Fuertes N, Lindberg F, Chocholatý O, Taxén C, Šerák J, Thierry D. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability. Corros Sci. 2016;110:71–81. doi:10.1016/j.corsci.2016.04.022

Volovitch P, Vu TN, Allély C, Abdel Aal A, Ogle K. Under-standing corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion re-sistance of Zn–Al–Mg coatings on steel. Corros Sci. 2011;53(8):2437–2445. doi:10.1016/j.corsci.2011.03.016

Ha HY, Park SJ, Kang JY, Kim HD, Moon MB. Interpretation of the corrosion process of a galvannealed coating layer on dual-phase steel. Corros Sci. 2011;53(7):2430–2436. doi:10.1016/j.corsci.2011.04.001

Natrup F, Graf W. Sherardizing: corrosion protection of steels by zinc diffusion coatings. Thermochemical Surface Engineering of Steels – Woodhead Publishing. 2015;62:737–750. doi:10.1533/9780857096524.5.737

Zhang FH. et al. The corrosion rules study of aluminizing and sherardized carbon-steel in oilfield wastewater. J Petrochem Univ. 2012;25(6):44–47. doi:10.3969/j.issn.1006-396X.2012.06.011

Ataiwi AH, Al-Shalchy SI, Mahdi GA. Characterization of Sherardized Low Carbon Steel Used in Oil Pipelines Coated with Polymer Blends Layers: Part (A). Eng Technol J [Internet]. 2015 [cited 2022];33(4):855–867. English. Availa-ble from: https://www.iasj.net/iasj/download/ddbd7513372e3f86.

Galin RG, inventor. Modifitsirovannyy poroshok tsinka. Russian Federation patent RU 2170643. 2001 July 20. Rus-sian.

Biryukov AI, Zakharyevich DA, Galin RG, Devyaterikova N, Scherbakov I. Corrosion resistance of thermal diffusion zinc coatings of PNTZ in oilfield environments. EDP Sci. 2019; 121:02005. doi:10.1051/e3sconf/201912102005

Galin RG, Zakharyevich DA, Rushchits SV. Formation and structure of diffusional zinc coatings formed in nanocrystallized zinc powders. Materials Science Forum. Trans Tech Publications Ltd. 2016;870:404–408. doi:10.4028/www.scientific.net/MSF.870.404

Galin RG, Shaburova NA, Zakharyevich DA. Thermal Diffu-sion Galvanizing in Ferriferous Zinc Powder. Materials Science Forum. Trans Tech Publications Ltd. 2016;870:129–134. doi:10.4028/www.scientific.net/MSF.870.129

Biryukov АI, Galin RG, Zakharyevich DА, Wassilkowska AV, Batmanova ТV.The effect of the chemical composition of intermetallic phases on the corrosion of thermal diffusion zinc coatings. Surface Coat Technol. 2019;372:166–172. doi:10.1016/j.surfcoat.2019.05.029

Biryukov AI, Galin RG, Zakharyevich DA, Wassilkowska A, Kolesnikov AV, Batmanova TV. A layer-by-layer analysis of the corrosion properties of diffusion zinc coatings. Arch Metall Mater. 2020;65:99–102. doi:10.24425/amm.2019.131101

Tufanov DG. Korozionnaya stoykost nerzhaveyushchikh staley, splavov i chistykh metallov [Corrosion resistance of stainless steels, alloys and pure metals]. Moscow: Metal-lurgy; 1982. 352 p. Russian.

Wallinder IO, Leygraf C. A critical review on corrosion and runoff from zinc and zinc‐based alloys in atmospheric environments. Corros. 2017;73(9):1060–1077. doi:10.5006/2458

Lindström R, Svensson JE, Johansson LG. The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature. J Electrochem Soc. 2000;147(5):1751–1757. doi:10.1149/1.1393429

Ooij WJ, Sabata A. Under-vehicle corrosion testing of primed zinc and zinc alloy-coated steels. Corros. 1990;46(2):162–171. doi:10.5006/1.3585083

Sagiyama M, Hiraya A. Analysis of initial oxide films formed on zinc and zinc-iron alloy coatings. Zairyo-to-Kankyo. 1993;42(11):721–727. doi:10.3323/jcorr1991.42.721

Biryukov AI, Galin RG, Zakharyevich DA, Tronov AP. For-mation and structure of simoncolleite on the surface of thermal diffusion zinc coatings in chloride-containing media. Corrosion: Protection of metals and physical chemistry of surfaces [Internet]. 2016[cited 2022];9:28–33. Russian. Available from: https://www.elibrary.ru/item.asp?id=27703190

Tanaka H, Fujioka A, Futoyu A, Kandori K, Ishikawa T. Syn-thesis and characterization of layered zinc hydroxychlorides. J Solid State Chem. 2007;180(7):2061–2066. doi:10.1016/j.jssc.2007.05.001

Tanaka H. et al. Role of zinc compounds on the formation, morphology, and adsorption characteristics of β-FeOOH rusts. Corros Sci. 2010;52(9):29732–2978. doi:10.1016/j.corsci.2010.05.010




DOI: https://doi.org/10.15826/chimtech.2022.9.4.21

Copyright (c) 2022 Alexander I. Biryukov, Dmitry A. Zakharyevich, Tanyana V. Batmanova, Rashit G. Galin, Maksim N. Ulyanov, Vladimir E. Zhivulin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice