Cover Image

Determination of reducing carbohydrates in natural honey samples by optical micrometry method

Ivan S. Shchemelev, Danil S. Khasanov, Maria A. Smirnova, Alexander V. Ivanov, Nikolay B. Ferapontov, Mikhail G. Tokmachev


The present article deals with the determination of the total amount of glucose and fructose in natural honey samples by the optical micrometry (OM) method. (Poly)vinyl alcohol spherical granules impregnated with a 0.05 mol/l borax solution were chosen as a sensitive element. It was shown that the formation of chelate esters of boron with polymer and carbohydrates is a pH-dependent process, and that the pH range 8.5–10.0 is the most appropriate for quantifying the total amount of reducing carbohydrates because glucose and fructose are undiscriminated. The impregnated polymer is not sensitive to the sucrose presence in the solution due to the absence of cis-diol fragments in it. Subsequently, the OM method was tested in the analysis of natural honey samples. The relative standart deviation in the case of OM method is less than 6%, and the results are similar to those obtained by the iodometric titration method. This makes the OM method suitable for laboratory-scale applications.


determination of carbohydrates; optical micrometry; sensitive polymers; chelate esters; analysis of honey

Full Text:



Cole SW. The determination of reducing sugars by titration of ferricyanide. Biochem J.1933;27(3):723–726. doi:10.1042/bj0270723

Chandraju S, Chidan Kumar CS, Vankatesh R. Estimation of reducing sugars by acid hydrolysis of black grape (Vitis vi-nifera L.) peels by standard methods. J Chem Pharm Res. 2014;6(5):862–866.

Shaffer PA, Somogyi M. Copper-iodometric reagents for sugar determination. J Biol Chem. 1933;100(3):695–713. doi:10.1016/S0021-9258(18)75943-7

Zhou W, Guo P, Chen J, Lei Yo. A rapid analytical method for the quantitative determination of the sugar in acarbose fermentation by infrared spectroscopy and chemometrics. Spectrochim Acta A. 2020;240:118571. doi:10.1016/j.saa.2020.118571

Monago-Marana O, Afseth NK, Knutsen SH, Wubshet SG, Wold JP. Quantification of soluble solids and individual sugars in apples by Raman spectroscopy: a feasibility study. Postharvest Biol Technol. 2021;180:111620. doi:10.1016/j.postharvbio.2021.111620

Fernández-Novales J, López M-I, Sánchez M-T, Moralez J, González-Caballero V. Shortwave-near infrared spectrosco-py for determination of reducing sugar content during grape ripening, winemaking, and aging of white and red wines. Food Res Int. 2009;42(2):285–291. doi:10.1016/j.foodres.2008.11.008

Zhang C-H, Yun Yo-H, Zhang Zh-M, Liang Yi-Z. Simultane-ous determination of neutral and uronic sugars based on UV-vis-spectrometry combined with PLS. Int J Biol Macro-mol. 2016;87:290–294. doi:10.1016/j.ijbiomac.2016.02.066

Büttler JR, Bechtold Th, Pham T. Efficient and simple method for the quantification of alkyl polyglycosides by hydrolysis and photometric determination of reducing sug-ars. Arabian J Chem. 2022;15(9):104102. doi:10.1016/j.arabjc.2022.104102

Soyseven M, Sezgin B, Arli G. A novel, rapid and robust HPLC-ELSD method for simultaneous determination of fructose, glucose and sucrose in various food samples: method development and validation. J Food Comp Analysis. 2022;107:104400. doi:10.1016/j.jfca.2022.104400

Lindqvist DN, Pedersen HÆ, Rasmussen LH. A novel method for determination of the fructose, glucose and sucrose dis-tribution in nectar from orchids by HPLC-ELSD. J Chrom B. 2018;1081-1082:126–130. doi:10.1016/j.jchromb.2018.02.019

Wang H, Hu L., Zhou P, Ouyang L, Chen B, Li Yi, Chen Ya, Zhang Ya, Zhou J. Simultaneous determination of fructose, glucose and sucrose by solid phase extraction-liquid chro-matography-tandem mass spectrometry and its application to source and adulteration analysis of sucrose in tea. J Food Comp Analysis. 2021;96:103730. doi:10.1016/j.jfca.2020.103730

Dominguez MA, Jacksén J, Emmer Å, Centurión ME. Capil-lary electrophoresis method for the determination of car-bohydrates and proline in honey samples. Microchem J. 2016; 129:1–4. doi:10.1016/j.microc.2016.05.017

Rizelio VM, Tenfen L, da Silveria R, Gonzaga LV, Oliveira Costa AC, Fett R. Development of a fast capillary electro-phoresis method for determination of carbohydrates in honey samples. Talanta. 2012;93:62–66. doi:10.1016/j.talanta.2012.01.034

Zhuang N, Ma J, Yang L, Xue R, Qian Xi, Chen M, Zhang S, Chu Zh, Dong W, Zhou J, Jiang M. Rapid determination of sucrose and glucose in microbial fermentation and fruit juice samples using engineering multi-enzyme biosensing microchip. Microchem J. 2021;164:106075. doi:10.1016/j.microc.2021.106075

Adeniyi O, Sicwetsha S, Mashazi Ph. Nanomagnet-silica nanoparticles decorated with Au@Pd for enhanced peroxi-dase-like activity and colorimetric glucose sensing. ACS Appl Mater Interfaces. 2020;12(2):1973–1987. doi:10.1021/acsami.9b15123

Tao Yi, Luo F, Lin Yi, Dong N, Li Ch, Lin Zh. Quantitative gold nanorods based photothermal biosensor for glucose using a thermometer as readout. Talanta. 2021;230:122364. doi:10.1016/j.talanta.2021.122364

Lan Yu, Xue M, Qiu L, Meng Z. Clinical evaluation of a pho-tonic crystal sensor for glucose monitoring in urine. Chem Select. 2019;4(21):6547–6551. doi:10.1002/slct.201900840

Chen Ch, Dong Zh-Q, Shen J-H, Chen H-W, Zhu Yi-H, Zhu Zhi-G. 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS Omega. 2018;3:3211–3217. doi:10.1021/acsomega.7b02046

Elsherif M, Umar Hassan M, Yetisen A.K, Butt H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano. 2018;12(6):5452–5462. doi:10.1021/acsnano.8b00829

Andreev EA, Komkova MA, Nikitina VN, Karyakin AA Rea-gentless impedimetric sensors based on aminophenyl-boronic acids. J Anal Chem. 2019;74(2):153–171. doi:10.1134/S1061934819010040

Kraiskii AV, Postnikov VA, Sultanov TT, Khamidulin AV. Holographic sensors for diagnostics of solution compo-nents. Quant Electron. 2010;40(2):178–182. doi:10.1070/QE2010v040n02ABEH014169

Postnikov VA, Kraiskii AV, Sultanov TT, Deniskin VV. Holo-graphic sensors of glucose in model solutions and serum. In: Abstracts of the 5th International Conference on Ad-vanced Optoelectronic and Lasers; 2010 Sep 10-14; Sevasto-pol, Ukraine. p. 257–258. doi:10.1109/CAOL.2010.5634191

Ferapontov NB, Kovaleva SS, Rubin FF. Determination of the nature and concentration of solutes using the swelling granule method. J Anal Chem. 2007;62(10):924–929. doi:10.1134/S1061934807100048

Kudukhova IG, Rudakov OB, Rudakova LV, Ferapontov NB. Novyj sposob kontrolya soderzhaniya vody v vodno-spirtovyh smesyah, osnovannyj na mikrofotograficheskom izmerenii effektov nabuhaniya polimernyh granul [A new method of the water content control in water-alcoholic mixtures based on microphotographic measurement of the polymer grains swelling effects]. Sorbts Khromat Processy. 2010;10(5):759–761. Russian.

Babayan II, Ivanov AV, Ferapontov NB, Tokmachev MG. Using crosslinked polyvinyl alcohol granules for the de-termination of the composition of mixed electrolyte solu-tions. J Anal Chem. 2019;74(8):834–838. doi:10.1134/S1061934819080033

Tokmachev MG, Ferapontov NB, Ivanov AV, Gagarin AN, Agapov IO, inventors, Moscow State University, assignee. Method of determining composition of solution based on swelling kinetic of polymer gel therein. Russian Federation patent RU 2714832 C1. 2020 Feb 19. Russian.

Tokmachev MG, Ferapontov NB, Trobov HT, Gavlina OT. Modelirovanie kinetiki nabuhaniya gelej gidrofil'nyh po-limerov [The modelling of hydrophilic polymer gel swell-ing kinetics]. Uchen Zap Fiz Fak-ta Mosk Un-ta. 2018;(5):1850303. Russian.

Cui Q, Muscatello MMW, Asher SA. Photonic crystal borax competitive binding carbohydrate sensing motif. Analyst. 2009;134(5):875–880. doi:10.1039/b901017n

Shchemelev IS, Smirnova MA, Ivanov AV, Ferapontov NB. Application of complex forming impregnated polivynil alcohol for the determination of carbohydrates by Optical Micrometry. Russ J Coord Chem. 2022;48(10):641–646. doi:10.1134/S1070328422100050

Tokmachev MG, Ferapontov NB, Agapov IO, Trobov KT. The effect of polymer properties and solution composition on the distribution, properties and amount of water in swollen ion exchangers. Colloid J. 2018;80(1):91–95. doi:10.1134/S1061933X1801012X

Harada A, Takagi T, Kataoka Sh, YamamotoT, Endo A. Boron adsorption mechanism on polyvinyl alcohol. Adsorption. 2011;17(1):171–178. doi:10.1007/s10450-010-9300-8

Shchemelev I.S., Staroverova A.V., Ivanov A.V., Ferapontov N.B. Primenenie polielektrolitov dlya opredeleniya koncen-tracii saharozy v rastvore metodom opticheskoj mikromet-rii [The use of polyelectrolytes for determining the concen-tration of sucrose in solution by the OM method]. Sorbts Khromat Processy. 2021;21(6):841–849. Russian.

Shchemelev I.S., Ferapontov N.B., Ivanov A.V. Kineticheskie aspekty opredeleniya soderzhaniya uglevodov v vodnyh rastvorah metodom opticheskoj micrometrii [Kinetic as-pects of the carbohydrates content determination in aque-ous solution by OM method]. Nauch Vestn SamGU. 2021;3(127):14–19. Russian.

Pravila veterinarno-sanitarnoj ekspertizy meda pri proda-zhe na rynkah [Rules for the veterinary and sanitary ex-pertise of honey when sold in the markets]. Moscow: Co-dex; 1995. 23 p. Russian.

Samiullah K, Ranjha NM. Effect of cross-linking on swell-ing and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogel. Polym Bull. 2014;71(8):2133–2158. doi:10.1007/s00289-014-1178-2

Ivanov AV, Smirnova MA, Tikhanova OV, Tokmachev MG, Gagarin AN, Ferapontov NB. Granulated metamaterial cross-linked polyvinyl alcohol magnetite for use in OM. Theor Found Chem Eng. 2021;55(5):1009–1014. doi:10.1134/S0040579521050067


Copyright (c) 2022 Ivan S. Shchemelev, Danil S. Khasanov, Maria A. Smirnova, Alexander V. Ivanov, Nikolay B. Ferapontov, Mikhail G. Tokmachev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)
Copyright Notice