Cover Image

Electroreduction of silicon from the NaI–KI–K2SiF6 melt for lithium-ion power sources

Rayana K. Abdurakhimova, Michail V. Laptev, Natalia M. Leonova, Anastasia M. Leonova, Alexander S. Schmygalev, Andrey V. Suzdaltsev


Silicon and silicon-based materials are increasingly used in microelectronics, metallurgy and power generation. To date the active study aimed at the development of silicon materials to be used in devices for solar energy conversion, accumulation and storage is underway. In addition, silicon is a promising anode material for lithium-ion fuel cells. In the present paper a possibility of silicon electroreduction from the NaI–KI–K2SiF6 melt in the argon atmosphere is studied. With this aim in view the electrolysis of the NaI–KI–K2SiF6 melt with glassy carbon cathode was performed under galvanostatic and potentiostatic regimes at the temperatures ranging from 650 to 750 °С. The morphology, phase and elemental analyses of the obtained silicon deposits were performed after their separation from the electrolytes by the ICP, SEM-EDX, XRD and Raman spectroscopy methods. Fiber and thread-like silicon samples of 60 to 320 nm in dimeter with admixtures concentrations (mainly oxygen) from 1.2 to 4.6 wt.% were experimentally synthesized. The obtained samples were tested as possible Si/C composite anodes for lithium-ion power sources. The discharge capacity of such power sources after 30 cycles of lithiation-delithiation ranged from 440 to 565 mAh·g–1 and the coloumbic efficiency ranged from 89 to 91%.


silicon; nanofibers; electroreduction; melt; lithium-ion power source; cycling

Full Text:



Cohen U. Some prospective applications of silicon electrodeposition from molten fluorides to solar cell fabrication. J Electron Mater. 1977;6:607–643. doi:10.1007/BF02660341

Gevel T, Zhuk S, Leonova N, Leonova A, Trofimov A, Suzdaltsev A, Zaikov Yu. Electrochemical synthesis of nano-sized silicon from KCl-K2SiF6 melts for powerful lithium-ion batteries. Appl Sci. 2021;11(22):10927. doi:10.3390/app112210927

Zh Yu, Fang Sh, Wang N, Shi B, Hu Y, Shi Zh, Shi D, Yang J. In-situ growth of silicon nanowires on graphite by molten salt electrolysis for high performance lithium-ion batteries. Mater Lett. 2020;273:127946. doi:10.1016/j.matlet.2020.127946

Islam MM, Said H, Hamzaoui AH, Fukata N, Akimoto K. Study of structural and optical properties of electrodeposited silicon films on graphite substrates. Nanomater. 2022;12(3):363. doi:10.3390/nano12030363

Fang D, Weimin Zh, Haiming Ya, Chengguo S, Geng X, Chen Y, Li L, Liu Z. Surface modification and functional structure space design to improve the cycle stability of silicon based materials as anode of lithium ion batteries. Coat. 2021;11(9):1047. doi:10.3390/coatings11091047

Galashev AY, Vorob'ev AS. First principle modeling of a silicene anode for lithium ion batteries. Electrochim Acta. 2021;378:138143. doi:10.1016/j.electacta.2021.138143

Gevel TA, Zhuk SI, Leonova NM, Leonova AM, Suzdaltsev AV, Zaikov YuP. Electrodeposition of silicon from the KCl–CsCl–K2SiF6 melt. Rus Met (Metally). 2022;2022:958–964. doi:10.1134/S0036029522080237

Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem Commun. 2007;9:796–800. doi:10.1016/j.elecom.2006.11.014

Airapetov AA, Vasiliev SV, Kulova TL, Lebedev ME, Metlitskaya AV, Mironenko AA, Nikol’skaya NF, Odinokov VV, Pavlov GYa, Pukhov DE, Rudyi A., Skundin AM. Thin film negative electrode based on silicon composite for lithium-ion batteries. Russ Microelectron. 2016;45:285–291. doi:10.1134/S1063739716030021

Wu JJ, Chen Z, Ma W, Dai Y. Thermodynamic estimation of silicon tetrachloride to trichlorosilane by a low temperature hydrogenation technique. Silicon. 2017;9:69–75. doi:10.1007/s12633-015-9353-0

Fukata N, Oshima T, Tsuruid T, Ito S, Murakami K. Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam. Sci Techn Adv Mater. 2005;6:628–632. doi:10.1016/j.stam.2005.06.015

Cai Z, Li Y, Tian W. Electrochemical behavior of silicon compound in LiF–NaF–KF–Na2SiF6 molten salt. Ionics. 2011;17:821–826. doi:10.1007/s11581-011-0582-y

Hu Y, Wang X, Xiao J, Hou J, Jiao Sh, Zhu H. Electrochemical behavior of silicon (IV) ion in BaF2–CaF2–SiO2 melts at 1573 K. J Electrochem Soc. 2013;160:81–84. doi:10.1149/2.035303jes

Bieber AL, Massot L, Gibilaro M, Cassayre L, Taxil P, Chamelot P. Silicon electrodeposition in molten fluorides. Electrochim Acta. 2012;62:282–289. doi:10.1016/j.electacta.2011.12.039

Maeda K, Yasuda K, Nohira T, Hagiwara R, Homma T. Silicon electrodeposition in water-soluble KF-KCl molten salt: Investigations on the reduction of Si(IV) ions. J. Electrochem Soc. 2015;162(9):D444–D448. doi:10.1149/2.0441509jes

Zou X, Ji L, Yang X, Lim T, Yu ET, Bard AJ. Electrochemical formation of a p-n junction on thin Film silicon deposited in molten salt. J Amer Chem Soc. 2017;139:16060. doi:10.1021/jacs.7b09090

Zhuk SI, Isakov AV, Apisarov AP, Grishenkova OV, Isaev VA, Vovkotrub EG, Zaikov YuP. Electrodeposition of continuous silicon coatings from the KF-KCl-K2SiF6 melts. J. Electrochem. Soc. 2017;164(8):H5135–H5138. doi:10.1149/2.0171708jes

Dong Y, Slade T, Stolt MJ, Li L, Girard SN, Mai L, Jin S. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3. Angew Chemie. 2017;129:14645–14649. doi:10.1002/anie.201707064

Juzeliunas E, Fray DJ. Silicon electrochemistry in molten salts. Chem Reviews. 2020;120:1690. doi:10.1021/acs.chemrev.9b00428

Yu Zh, Wang N, Fang Sh, Qi X, Gao Zh, Yang J, Lu Sh. Pilot-plant production of high-performance silicon nanowires by molten salt electrolysis of silic. Ind Eng Chem Res. 2020;59:1–8. doi:10.1021/acs.iecr.9b04430

Laptev MV, Isakov AV, Grishenkova OV, Vorob'ev AS, Khudorozhkova AO, Akashev LA, Zaikov YuP. Electrodeposition of thin silicon films from the KF-KCl-KI-K2SiF6 melt. J Electrochem Soc. 2020;167(4):042506. doi:10.1149/1945-7111/ab7aec

Hiroki N, Yokoshima T, Momma T, Osaka T. Highly durable SiOC composite anode prepared by electrodeposition for lithium secondary batteries. Energy Env Sci. 2012;5(4):6500–6505. doi:10.1039/C2EE03278C

Plugotarenko NK, Myasoedova TN, Grigoryev MN, Mikhailova TS. Electrochemical deposition of silicon-carbon films: A study on the nucleation and growth mechanism. Nanomater. 2019;9:1754. doi:10.3390/nano9121754

Tao H, Nara H, Yokoshima T, Momma T, Osaka T. Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries. J Power Sources. 2013;222:503–509. doi:10.1016/j.jpowsour.2012.09.008

Suzdaltsev A. Silicon Electrodeposition for microelectronics and distributed energy: A mini-review. Electrochem. 2022;3:760–768. doi:10.3390/electrochem3040050

Xin Q, Hang T, Nara H, Yokoshima T, Li M, Osaka T. Electrodeposited three-dimensional porous Si–O–C/Ni thick film as high performance anode for lithium-ion batteries. J Power Sources. 2014;272:794–799. doi:10.1016/j.jpowsour.2014.09.042

Sato T, Toda S, Tachikawa T, Phase diagrams of the Nal-KI and KI-Csl binary systems. Denki Kagaku oyobi Kogyo Butsuri Kagaku. 1987;55(8): 617–620. doi:10.5796/kogyobutsurikagaku.55.617

Khudorozhkova AO, Isakov AV, Kataev AA, Redki AA, Zaykov YP. Density of KF–KCl–KI melts. Rus Met (Metally) 2020;2020:918–924. doi:10.1134/S0036029520080078

Gevel T, Zhuk S, Suzdaltsev AV, Zaikov YuP. Study into the possibility of silicon electrodeposition from a low-fluoride KCl-K2SiF6 melt. Ionics. 2022;28:3537–3545. doi:10.1007/s11581-022-04573-9

Shishkin AV, Shishkin VY, Salyulev AB, Kesikopulos VA, Kholkina AS, Zaikov YP. Electrochemical reduction of uranium dioxide in LiCl–Li2O melt. Atomic Energy. 2021;131(2):78–82. doi:10.1007/s10512-022-00850-y

Casimir A, Zhang H, Ogoke O, Amine J, Wu G. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy. 2016;27:359–376. doi:10.1016/j.nanoen.2016.07.023

Trofimov AA, Leonova AM, Leonova NM, Gevel TA. Electrodeposition of silicon from molten KCl-K2SiF6 for lithium-ion batteries. J Electrochem Soc. 2022;169:020537. doi:10.1149/1945-7111/ac4d6b


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2022 Rayana K. Abdurakhimova, Michail V. Laptev, Natalia M. Leonova, Anastasia M. Leonova, Alexander S. Schmygalev, Andrey V. Suzdaltsev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2023
ISSN 2411-1414 (Online)
Copyright Notice