Electrophoretic deposition of YSZ layers on pyrolytic graphite and a porous anode substrate based on NiO-YSZ
Abstract
Keywords
Full Text:
PDFReferences
Proskuryakova L. Foresight for the ‘energy’priority of the Russian Science and Technology Strategy. Energy Strateg Rev. 2019;26:100378. doi:10.1016/j.esr.2019.100378
Yang B, Li Y, Li J, Shu H, Zhao X, Ren Y. Comprehensive summary of solid oxide fuel cell control: a state-of-the-art review. Protect Control Modern Power Systems. 2022;7(1):1–31. doi:10.1186/s41601-022-00251-0
Giorgi L, Leccese F. Fuel cells: Technologies and applications. Open Fuel Cells J. 2013;6(1):1–20. doi:10.2174/1875932720130719001
Connor P. Solid oxide fuels cells: facts and figures. Springer. 2013;163–180. doi:10.1007/978-1-4471-4456-4_1
Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation – A review. Renewable Sustainable Energy Rev. 2013;20:430–442. doi:10.1016/j.rser.2012.11.031
Savignat SB., Chiron M., Barthet C. Tape casting of new electrolyte and anode materials for SOFCs operated at intermediate temperature. J Eur Ceram Soc. 2007;27(2–3):673–678. doi:10.1016/j.jeurceramsoc.2006.04.049
Dunyshkina LA. Vvedenie v metody polucheniya plenochnykh elektrolitov dlya tverdooksidnykh toplivnykh elementov: monografiya. Ekaterinburg: UrO RAS; 2015. 125 p. Russian.
Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA. A perspective on low-temperature solid oxide fuel cells. Energy Environment Sci. 2016;9(5):1602–1644. doi:10.1039/C5EE03858H
Cooper SJ, Brandon NP. Solid oxide fuel cell lifetime and reliability: critical challenges in fuel cells. London: Academic Press. 2017; 223 p.
Ramadhani F, Hussain MA, Mokhlis H, Hajimolana S. Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renewable Sustainable Energy Rev. 2017;76:460–484. doi:10.1016/j.rser.2017.03.052
Singh B, Ghosh S, Aich S, Roy B. Low temperature solid oxide electrolytes (LT-SOE): A review. J Power Sources. 2019;339:103–135. doi:10.1016/j.jpowsour.2016.11.019
Kalinina EG, Pikalova EY. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects. Russ Chem Rev. 2019;88(12):1179. doi:10.1070/RCR4889
Pikalova EY, Kalinina EG. Place of electrophoretic deposition among thin-film methods adapted to the solid oxide fuel cell technology: A short review. Int J Energy Prod Manag. 2019;4(1):1–27. doi:10.2495/EQ-V4-N1-1-27
Kalinina EY, Pikalova EG. Opportunities, challenges and prospects for electrodeposition of thin-film functional layers in solid oxide fuel cell technology. Mater. 2021;14(19):5584. doi:10.3390/ma14195584
Kalinina EG, Pikalova EY, Kolchugin AA, Pikalov SM, Kaigorodov AS. Cyclic electrophoretic deposition of electrolyte thin-films on the porous cathode substrate utilizing stable suspensions of nanopowders. Solid State Ionics. 2017;302:126–132. doi:10.1016/j.ssi.2017.01.016
Das D, Basu RN. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates. Mater Res Bull. 2013;48(9):3254–3261. doi:10.1016/j.materresbull.2013.05.034
Besra L, Compson C, Liu M. Electrophoretic deposition on non-conducting substrates: the case of YSZ film on NiO–YSZ composite substrates for solid oxide fuel cell application. J Power Sources. 2007;173(1):130–136. doi:10.1016/j.jpowsour.2007.04.061
Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52(1):1–61. doi:10.1016/j.pmatsci.2006.07.001
Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: From traditional ceramics to nanotechnology. Journal of the Eur Ceram Soc. 2008;28(7):1353–1367. doi:10.1016/j.jeurceramsoc.2007.12.011
Kalinina EG, Pikalova EY, Safronov AP. A study of the electrophoretic deposition of thin-film coatings based on barium cerate nanopowder produced by laser evaporation. Russ J Appl Chem. 2017;90(5):701–707. doi:10.1134/S1070427217050056
Pikalova EY, Kalinina EG. Electrophoretic deposition in the solid oxide fuel cell technology: Fundamentals and recent advances. Renewable Sustain Energy Rev. 2019;116:109440. doi:10.1016/j.rser.2019.109440
Negishi H, Yamaji K, Sakai N, Horita T, Yanagishita H. Electrophoretic deposition of YSZ powders for solid oxide fuel cells. J Mater Sci. 2004;39(3):833–838. doi:10.1023/B:JMSC.0000012911.86185.13
Kalinina EG, Samatov OM, Safronov AP. Stable suspensions of doped ceria nanopowders for electrophoretic deposition of coatings for solid oxide fuel cells. Inorg Mater. 2016;52(8):858–864. doi:10.1134/S0020168516080094
Das D, Basu RN. Organic acids as electrostatic dispersing agents to prepare high quality particulate thin film. J Alloys Compd. 2017;729:71–83. doi:10.1016/j.jallcom.2017.09.097
Ferrari B, Moreno R. Zirconia thick films deposited on nickel by aqueous electrophoretic deposition. J Electrochem Soc. 2000;147(8):2987. doi:10.1149/1.1393636
Fukada YN, Nagarajan W, Mekky W. Electrophoretic deposition—mechanisms, myths and materials. J Mater Sci. 2004;39(3):787–801. doi:10.1023/B:JMSC.0000012906.70457.df
Sánchez-Miranda MJ, Sarmiento-Gómez E, Arauz-Lara JL. Brownian motion of optically anisotropic spherical particles in polymeric suspensions. Eur Phys J E. 2015;38(1):1–6. doi:10.1140/epje/i2015-15003-x
Kostikova VI, Eremeeva ZhV. Technology of composite materials. Vologda: Infra-Engineering; 2021. 484 p. Russian.
Das D, Bagchi B, Basu RN. Nanostructured zirconia thin film fabricated by electrophoretic deposition technique. J Alloys Compd. 2017;693:220–1230. doi:10.1016/j.jallcom.2016.10.088
DOI: https://doi.org/10.15826/chimtech.2022.9.4.25
Copyright (c) 2022 Artem V. Solovev, Georgy N. Starostin, Inna A. Zvonareva, Stanislav S. Tulenin , Vyacheslav F. Markov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice