Synthesis and characterization of ZnBTC-based MOFs: effect of solvents and salt
Abstract
Keywords
Full Text:
PDFReferences
Gerasimova EN, Yaroshenko VV, Talianov PM, Peltek OO, Baranov MA, Kapitanova PV, Zyuzin MV. Real-Time temperature monitoring of photoinduced cargo release inside living cells using hybrid capsules decorated with gold nano-particles and fluorescent nanodiamonds. ACS Appl Mater Interfaces. 2021;13(31):36737–36746. doi:10.1021/acsami.1c05252
Gerasimova EN, Yaroshenko VV, Mikhailova LV, Dolgintsev DM, Timin AS, Zyuzin MV, Zuev DA. Thermally induced mechanical switching of the second‐harmonic generation in pnipam hydrogels‐linked resonant Au and Si nanoparticles. Adv Optic Mater. 2022:2201375. doi:10.1002/adom.202201375
Gorrini F, Giri R, Avalos CE, Tambalo S, Mannucci S, Basso L, Bifone A. Fast and sensitive detection of paramagnetic species using coupled charge and spin dynamics in strongly fluorescent nanodiamonds. ACS Appl Mater Interfaces. 2019;11(27):24412–24422. doi:10.1021/acsami.9b05779
Gunina E, Zhestkij N, Bachinin S, Fisenko SP, Shipilovskikh DA, Milichko VA, Shipilovskikh SA. The influence of substi-tutes on the room temperature photoluminescence of 2-amino-4-oxobut-2-enoic acid molecular crystals. Photon Nanostruct Fundament Appl. 2022;48:100990. doi:10.1016/j.photonics.2021.100990
Zhestkij NA, Gunina EV, Fisenko SP, Rubtsov AE, Shipilov-skikh DA, Milichko VA, Shipilovskikh SA. Synthesis of high-ly stable luminescent molecular crystals based on (E)-2-((3-(ethoxycarbonyl)-5-methyl-4-phenylthiophen-2-yl) amino)-4-oxo-4-(p-tolyl) but-2-enoic acid. Chim Techno Ac-ta. 2021;8(4):20218411. doi:10.15826/chimtech.2021.8.4.11
Sato O. Dynamic molecular crystals with switchable physical properties. Nat Chem. 2016;8(7):644–656. doi:10.1038/nchem.2547
Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews. 2020;49(11):3565–3604. doi:10.1039/D0CS00017E
Fu S, Jin E, Hanayama H, Zheng W, Zhang H, Di Virgilio L, Wang HI. Outstanding charge mobility by band transport in two-dimensional semiconducting covalent organic frame-works. J Am Chem Soc. 2022;144(16):7489–7496. doi:10.1021/jacs.2c02408
Illarionov YY, Knobloch T, Grasser T. Inorganic molecular crystals for 2D electronics. Nat Electron. 2021;4(12):870–871. doi:10.1038/s41928-021-00691-w
Siddique S, Chow JC. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci. 2020;10(11):3824. doi:10.3390/app10113824
Yusran Y, Li H, Guan X, Fang Q, Qiu S. Covalent organic frameworks for catalysis. Energy Chem. 2020;2(3):100035. doi:10.1016/j.enchem.2020.100035
Koohsaryan E, Anbia M. Nanosized and hierarchical zeolites: A short review. Chin J Catal. 2016;37(4):447–467. doi:10.1016/S1872-2067(15)61038-5
Möller K, Bein T. Mesoporosity – a new dimension for zeolites. Chem Soc Rev. 2013;42(9):3689–3707. doi:10.1039/C3CS35488A
Bai R, Song Y, Li Y, Yu J. Creating hierarchical pores in zeolite catalysts. Trends Chem. 2019;1(6):601–611. doi:10.1016/j.trechm.2019.05.010
Liang J, Shan G, Sun Y. Catalytic fast pyrolysis of lignocel-lulosic biomass: Critical role of zeolite catalysts. Renew Sustain Energy Rev. 2021;139:110707. doi:10.1016/j.rser.2021.110707
Chen L, Deng Y, Han W, Jiaqiang E, Wang C, Han D, Feng C. Effects of zeolite molecular sieve on the hydrocarbon ad-sorbent and diffusion performance of gasoline engine dur-ing cold start. Fuel. 2022;310:122427. doi:10.1016/j.fuel.2021.122427
Mingabudinova LR, Vinogradov VV, Milichko VA, Hey-Hawkins E, Vinogradov AV. Metal–organic frameworks as competitive materials for non-linear optics. Chem Soc Rev. 2016;45(19):5408–5431. doi:10.1039/C6CS00395H
Kulachenkov N, Haar Q, Shipilovskikh S, Yankin A, Pierson JF, Nomine A, Milichko VA. MOF‐Based Sustainable Memory Devices. Adv Funct Mater. 2022;32(5):2107949. doi:10.1002/adfm.202107949
Bachinin S, Gilemkhanova V, Timofeeva M, Kenzhebayeva Y, Yankin A, Milichko VA. Metal-organic frameworks for metal-ion batteries: towards scalability. Chim Techno Acta. 2021;8(3):20210304. doi:10.15826/chimtech.2021.8.3.04
Fonseca J, Gong T, Jiao L, Jiang HL. Metal–organic frame-works (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J Mater Chem A. 2021;9(17):10562–10611. doi:10.1039/D1TA01043C
Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Smith ZP. MOF-based membranes for gas separations. Chem Rev. 2020;120(16):8161–8266. doi:10.1021/acs.chemrev.0c00119
Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nat. 2003;423(6941):705–714. doi:10.1038/nature01650
Koryakina IG, Bachinin SV, Gerasimova EN, Timofeeva MV, Shipilovskikh SA, Bukatin AS, Zyuzin MV. Microfluidic syn-thesis of metal-organic framework crystals with surface defects for enhanced molecular loading. Chem Eng J. 2023;452:139450. doi:10.1016/j.cej.2022.139450
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Milichko VA. Dimensionality mediat-ed highly repeatable and fast transformation of coordination polymer single crystals for all-optical data processing. Nano Lett. 2022;22(17):6972–6981. doi:10.1021/acs.nanolett.2c01770
Kenzhebayeva Y, Bachinin S, Solomonov AI, Gilemkhanova V, Shipilovskikh SA, Kulachenkov N, Milichko VA. Light-induced color switching of single metal–organic framework nanocrystals. J Phys Chem Lett. 2022;13(3):777–783. doi:10.1021/acs.jpclett.1c03630
Gong M, Yang J, Li Y, Zhuang Q, Gu J. Substitution-type luminescent MOF sensor with built-in capturer for selective cholesterol detection in blood serum. J Mater Chem C. 2019;7(40):12674–12681. doi:10.1039/C9TC04399C
Furukawa H, Cordova KE, O’keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Sci. 2013;341(6149):1230444. doi:10.1126/science.1230444
Hong DH, Shim HS, Ha J, Moon HR. MOF‐on‐MOF architectures: applications in separation, catalysis, and sensing. Bull Kor Chem Soc. 2021;42(7):956–969. doi:10.1107/S0567739476001551
Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang H. Ultrathin 2D metal–organic framework nanosheets. Adv Mater. 2015;27(45):7372–7378. doi:10.1002/adma.201503648
Bosch M, Yuan S, Rutledge W, Zhou HC. Stepwise synthesis of metal–organic frameworks. Accounts of Chem Res. 2017;50(4):857–865. doi:10.1021/acs.accounts.6b00457
Dhakshinamoorthy A, Alvaro M, Horcajada P, Gibson E, Vishnuvarthan M, Vimont A, Garcia H. Comparison of porous iron trimesates basolite F300 and MIL-100 (Fe) as heterogeneous catalysts for lewis acid and oxidation reactions: roles of structural defects and stability. Acs Catal. 2012;2(10):2060–2065. doi:10.1021/cs300345b
Rowsell JL, Yaghi OM. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal− organic frameworks. J Am Chem Soc. 2006;128(4):1304–1315. doi:10.1021/ja056639q
Ren X, Gao Z, Wu G. Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption. Compos Commun. 2022;35:101292. doi:10.1016/j.coco.2022.101292
Mat Yusuf SNA, Ng YM, Ayub AD, Ngalim SH, Lim V. Characterisation and evaluation of trimesic acid derivatives as disulphide cross-linked polymers for potential colon targeted drug delivery. Polym. 2017;9(8):311. doi:10.3390/polym9080311
So PB, Chen HT, Lin CH. De novo synthesis and particle size control of iron metal organic framework for diclofenac drug delivery. Microporous Mesoporous Mater. 2020;309:110495. doi:10.1016/j.micromeso.2020.110495
Guo H, Zhang H, Wu N, Pan Z, Li C, Chen Y, Yang W. Tri-mesic acid-modified 2D NiCo-MOF for high-capacity super-capacitors. J Alloys Compd. 2022;934:167779. doi:10.1016/j.jallcom.2022.167779
Jia R, Zhang R, Yu L, Kong X, Bao S, Tu M, Xu B. Engineering a hierarchical carbon supported magnetite nanoparti-cles composite from metal organic framework and gra-phene oxide for lithium-ion storage. J Colloid Interface Sci. 2023;630:86–98. doi:10.1016/j.jcis.2022.10.088
Karuppasamy K, Bose R, Vikraman D, Ramesh S, Kim HS, Alhseinat E, Kim HS. Revealing the effect of various organic ligands on the OER activity of MOF-derived 3D hierarchical cobalt oxide@ carbon nanostructures. J Alloys Compd. 2023;934:167909. doi:10.1016/j.jallcom.2022.167909
Karuppasamy K, Bose R, Velusamy DB, Vikraman D, San-thoshkumar P, Sivakumar P, Kim HS. Rational design and engineering of metal–organic framework-derived trimetallic nicofe-layered double hydroxides as efficient electrocat-alysts for water oxidation reaction. ACS Sustain Chem Eng. 2022;10(45): 14693–14704. doi:10.1021/acssuschemeng.2c02830
Zhang X, Liu Z, Qu N, Lu W, Yang S, Tian Y, Zhao Y. Hollow Ni/Co‐MOFs with controllable surface structure as electrode materials for high performance supercapacitors. Adv Mater Interfaces. 2022;9(30):2201431. doi:10.1002/admi.202201431
Seoane B, Dikhtiarenko A, Mayoral A, Tellez C, Coronas J, Kapteijn F, Gascon J. Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs? Cryst Eng Comm. 2015;17(7):1693–1700. doi:10.1039/C4CE02324B
Dutta R, Kumar A. Effect of IL incorporation on ionic transport in PVdF-HFP-based polymer electrolyte nanocom-posite doped with NiBTC-metal-organic framework. J Solid State Electrochem. 2018;22(9):2945–2958. doi:10.1007/s10008-018-3999-7
Wang Z, Ge L, Zhang G, Chen Y, Gao R, Wang H, Zhu Z. The controllable synthesis of urchin-shaped hierarchical super-structure MOFs with high catalytic activity and stability. Chem Commun. 2021;57(70):8758–8761. doi:10.1039/D1CC03547A
Zhou M, Tang C, Xia H, Li J, Liu J, Jiang J, Chen C. Ni-based MOFs catalytic oxidative cleavage of lignin models and lig-nosulfonate under oxygen atmosphere. Fuel. 2022;320:123993. doi:10.1016/j.fuel.2022.123993
Sharma K, Kaushik R, Pandey PK, Chowdhury S, Gogoi R, Singh A, Siril PF. Enhanced photocatalytic activity of hier-archical C/ZnO nanocomposite derived from solvothermally restructured Zn-BTC microspheres. J Environ Chem Eng. 2022;10(3):107674. doi:10.1016/j.jece.2022.107674
Hu X, Huang T, Zhang G, Lin S, Chen R, Chung LH, He J. Metal-organic framework-based catalysts for lithium-sulfur batteries. Coordinat Chem Rev. 2023;475:214879. doi:10.1016/j.ccr.2022.214879
Xu B, Huang Z, Liu Y, Li S, Liu H. MOF-based nanomedicines inspired by structures of natural active components. Nano Today. 2023;48:101690. doi:10.1016/j.nantod.2022.101690
Luo Y, Huang G, Li Y, Yao Y, Huang J, Zhang P, Zhang Z. Removal of pharmaceutical and personal care products (PPCPs) by MOF-derived carbons: A review. Sci Total Environ. 2022:159279. doi:10.1016/j.scitotenv.2022.159279
Mo Z, Tai D, Zhang H, Shahab A. A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chem Eng J. 2022:136320. doi:10.1016/j.cej.2022.136320
Jeong C, Ansari Z, Anwer AH, Kim SH, Nasar A, Shoeb M, Mashkoor F. A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Separat Purificat Technol. 2022:122416. doi:10.1016/j.seppur.2022.122416
Prasetya N, Wenten IG, Franzreb M, Wöll C. Metal-organic frameworks for the adsorptive removal of pharmaceutically active compounds (PhACs): comparison to activated carbon. Coordinat Chem Rev. 2023;475:214877. doi:10.1016/j.ccr.2022.214877
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coordinat Chem Rev. 2023;475:214814. doi:10.1016/j.ccr.2022.214814
Kreno LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT. Metal-organic framework materials as chemical sensors. Chem Rev. 2012;112(2):1105–1125. doi:10.1021/cr200324t
Jasim SA, Amin HIM, Rajabizadeh A, Nobre MAL, Borhani F, Jalil AT, Khatami M. Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants. Water Sci Technol. 2022;86(9):2303–2335. doi:10.2166/wst.2022.318
Zhang D, Shen Y, Ding J, Zhou H, Zhang Y, Feng Q, Zhang P. A Combined experimental and computational study on the adsorption sites of zinc-based MOFs for efficient ammonia capture. Molec. 2022;27(17):5615. doi:10.3390/molecules27175615
Anyama CA, Ita BI, Ayi AA, Louis H, Okon EE, Ogar JO, Ose-ghale CO. Experimental and density functional theory studies on a zinc (II) coordination polymer constructed with 1, 3, 5-benzenetricarboxylic acid and the derived nanocomposites from activated carbon. ACS Omega. 2021;6(43):28967–28982. doi:10.1021/acsomega.1c04037
Gupta NK, Bae J, Kim S, Kim KS. Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: Ad-sorption, regeneration, and mechanism. Chemosphere. 2021;274:129789. doi:10.1016/j.chemosphere.2021.129789
Linxin D, Song L. Synthesis, structural characterization, methane and nitrogen adsorption of a 3D MOF {(ZnBTC)(CH3) 2NH (2) center dot DMF}(n) with a novel hollow-basket spheral cumulate structure. J Molec Struct. 2021:1223. doi:10.1016/j.molstruc.2020.128871
Li S, Yan J, Zhu Q, Liu X, Li S, Wang S, Sheng J. Biological effects of EGCG@ MOF Zn (BTC) 4 system improves wound healing in diabetes. Molec. 2022;27(17):5427. doi:10.3390/molecules27175427
Wang Y, Liu Y, Wang H, Dou S, Gan W, Ci L, Yuan Q. MOF-based ionic sieve interphase for regulated Zn2+ flux toward dendrite-free aqueous zinc-ion batteries. J Mater Chem A. 2022;10(8):4366–4375. doi:10.1039/D1TA10245A
Minh TT, Tu NTT, Van Thi TT, Hoa LT, Long HT, Phong NH, Khieu DQ. Synthesis of porous octahedral ZnO/CuO compo-sites from Zn/Cu-based MOF-199 and their applications in visible-light-driven photocatalytic degradation of dyes. J Nanomater. 2019. doi:10.1155/2019/5198045
Tehrani AA, Safarifard V, Morsali A, Bruno G, Rudbari HA. Ultrasound-assisted synthesis of metal–organic framework nanorods of Zn-HKUST-1 and their templating effects for facile fabrication of zinc oxide nanorods via solid-state transformation. Inorg Chem Commun. 2015;59:41–45. doi:10.1016/j.inoche.2015.06.028
Jabarian S, Ghaffarinejad A. Simultaneous electrosynthesis of Cu–BTC and Zn–BTC metal-organic frameworks on brass. New J Chem. 2020;44(45):19820–19826. doi:10.1039/D0NJ0430
Timofeeva M, Gorbunova I, Alekseevskiy P, Shipilovskikh DA, Shipilovskikh SA. Large scale application of tri-phenylphosphine oxide thin films for a modified catalytic Appel reaction. Photonics Nanostruct Fundamen Appl. 2022;50:101026. doi:10.1016/j.photonics.2022.101026
Zheng Y, Ouyang M, Han X, Lu L, Li J. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. J Power Sources. 2018;377:161–188. doi:10.1016/j.jpowsour. 2018.04.081
DOI: https://doi.org/10.15826/chimtech.2023.10.1.05
Copyright (c) 2022 Maria V. Timofeeva, Andrey N. Yankin
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International