Cover Image

Portable potentiometric device for determining the antioxidant capacity

Elena Salimgareeva, Dinara Igdisanova, Daria Gordeeva, Elena Yarkova, Anatoly Matern, Elena Gerasimova, Alla Ivanova


At present, the development of portable devices for the express assessment of the content of biologically active objects, such as antioxidants, is one of the relevant technological problems of modern chemistry, medicine, and engineering. The main advantages of such devices are the simplicity and rapidity of analysis, small volumes of analyte, as well as miniaturization of equipment, making it possible to carry out the on-site analysis and, thus, to take a step towards the personalized medicine. The potentiometric method using the K3[Fe(CN)6]/K4[Fe(CN)6] system, which in the laboratory-scale version proved to be the most accurate, reproducible, and express, was the basis for the developed prototypes of portable devices. In this study, two versions of prototypes of the portable device are proposed, namely, the open microcell with the 0.2 ml volume and the microfluidic device with flow control. The correctness of the antioxidant capacity (AOC) determination in both systems was confirmed by comparing the results of the "introduced-found" method on model solutions of antioxidants and their mixtures with the AOC results obtained in a standard laboratory electrochemical cell. The relative standard deviation did not exceed 10%. The AOC of some beverage industry was determined using the microfluidic device. The correlation coefficient of the results, obtained in the microfluidic device and the laboratory cell, was 0.90, which indicates good data convergence and the possibility of using the potentiometric method implemented in the microfluidic device to assess the AOC of multicomponent objects.


portable device; antioxidant; potentiometry; microcell; microfluidic device

Full Text:



Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. Eur J Med Chem. 2019;178:687–704. doi:10.1016/j.ejmech.2019.06.010

Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55–74. doi:10.1016/j.ejmech.2015.04.040

Denisov ET, Afanas’ev IB. Oxidation and antioxidants in organic chemistry and biology. United Kingdom: Taylor & Francis Group; 2005. 992 p.

Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical report). Pure Appl Chem. 2013:85(5):957–998. doi:10.1351/PAC-REP-12-07-15

Arts M JT J, Dallinga JS, Voss H-P, Haenen GRMM, Bast A. A critical appraisal of the use of the antioxidant capacity (TEAC) assay in defining optimal antioxidant structures. Food Chem. 2003;80(3):409–414. doi:10.1016/С0308-8146(02)00468-5

Van Den Berg R, Haenen GRMM, Van Den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999;66(4):511–517. doi:10.1016/S0308-8146(99)00089-8

Wayner DDM, Burton GW, Ingold KU, Barclay LRC, Locke SJ. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 1987;924(3):408–419. doi:10.1016/0304-4165(87)90155-3

Wayner DDM. Radical-trapping antioxidants in vitro and in vivo. Bioelectrochem Bioenerg. 1987;18(1–3):219–229. doi:10.1016/0302-4598(87)85024-9

Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK. Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants Using Randomly Methylated β-Cyclodextrin as the Solubility Enhancer. J Agric Food Chem. 2002;50(7):1815–1821. doi:10.1021/jf0113732

Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘Antioxidant Power’’: the FRAP assay. Anal Biochem. 1996;239:70‒76. doi:10.1006/abio.1996.0292

Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molec. 2007;12:1496‒1547. doi:10.3390/12071496

Benera M, Apak R. Ferric-o-phenanthroline adsorbed on a Nafion membrane: A novel optical sensor for antioxidant capacity measurement of food extracts. Sens Actuators B Chem. 2017;247:155–162. doi:10.1016/j.snb.2017.03.017

Bener M, Ozyurek M, Guclu K, Apak R. Development of a low-cost optical sensor for cupric reducing antioxidant capacity measurement of food extracts. Anal Chem. 2010;82:4252–4258. doi:10.1021/ac100646k

Apak R, Guclu K, Ozyurek M, Karademir S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J Agric Food Chem. 2004;52:7970−7981. doi:10.1021/jf048741x

Sharpe E, Frasco T, Andreescu D, Andreescu S. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac). Anal. 2013;138:249–262. doi:10.1039/c2an36205h

Arikana B, Alpa FN, Ozfidan-Konakcib C, Balcia M, Elbasana F, Yildiztugaya E, Cavusoglu H. Fe2O3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. Chemosphere. 2022;307(4):136048. doi:10.1016/j.chemosphere.2022.136048

Zhanga S, Chena J, Lianb M-L, Yanga W-Sh, Chena X. An engineered, self-propelled nanozyme as reactive oxygen species scavenger. Chem Engineer J. 2022;446(2):136794. doi:10.1016/j.cej.2022.136794

Ivanova A, Gerasimova E, Gazizullina E, Borisova M, Drokin R, Gorbunov E, Ulomskiy E, Rusinov V. The antioxidant screening of potential materials for drugs based on 6-nitro-1,2,4-triazoloazines containing natural polyphenol fragments. Anal Bioanal Chem. 2020;412:5147–5155. doi:10.1007/s00216-020-02466-2

Ivanova A, Gerasimova E, Gazizullina E. Study of antioxidant properties of agents from the perspective of their action mechanisms. Molec. 2020;25:4251. doi:10.3390/molecules25184251

Özbeka O, Berkel C. Recent advances in potentiometric analysis: Paper–based devices. Sens Intern. 2022;3:100189. doi:10.1016/j.sintl.2022.100189

Özbek O, Isildak Ö. Potentiometric determination of copper(II) ions based on a porphyrin derivative. J Chin Chem Soc. 2022;69(7):1060–1069. doi:10.1002/jccs.202200168

Özbek O, Isildak Ö. Potentiometric PVC membrane sensor for the determination of anti-epileptic drug levetiracetam in Pharmaceutical formulations. Chem Sel. 2022;7(3):1–8. doi:10.1002/slct.202103988

Özbek O, Isildak Ö. Use of 5,10,15,20-tetrakis(p-chlorophenyl)porphyrin as sensor material: potentiometric determination of aluminium(III) ions. Bull Mater Sci. 2022;45(114):1–10. doi:10.1007/s12034-022-02696-3

Ivanova AV, Gerasimova EL, Brainina KhZ. Potentiometric Study of Antioxidant Activity: Development and Prospects. Crit Rev Anal Chem. 2015;45:311–322. doi:10.1080/10408347.2014.910443

Ivanova AV, Gerasimova EL, Gazizullina ER. An integrated approach to the investigation of antioxidant properties by potentiometry. Anal Chim Acta. 2020;111:83–91. doi:10.1016/j.aca.2020.03.041

Eksperiandova LP, Belikov KN, Khimchenko SV, Blank TA. Once again about determination and detection limits. J Anal Chem. 2010;65(3):223–228. doi:10.1134/S1061934810030020

Shpigun LK, Arharova MA, Brainina KhZ, Ivanova AV. Flow injection potentiometric determination of total antioxidant activity of plant extracts. Anal Chim Acta. 2006;573(574):419–426. doi:10.1016/j.aca.2006.03.094

Brainina KhZ, Alyoshina LV, Gerasimova EL, Kazakov YaE, Beykin YaB, Belyaeva SV, Usatova TI, Inzhevatova OV, Ivanova AV, Khodos MY. New electrochemical methods of determining antioxidant activity of blood and blood fractions. Electroanal. 2009;21:618–624. doi:10.1002/elan.200804458

Menshchikov EB, Lankin VZ, Kandalintseva NV. Phenolic antioxidants in biology and medicine. Structures, properties, mechanisms of action. Germany: LAP LAMBERT Academic Publishing; 2012. 488 p.

Padayatty SJ, Katz A, Wang Ya, Eck P, Kwon O, Lee Je-H, Chen Sh, Corpe Ch, Dutta A, Dutta SK, Levine M. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr. 2003;22(1):1835. doi:10.1080/07315724.2003.10719272

Bensalah N, Trabelsi H, Gadri A. Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation. J Environ Manage. 2009;90:523–530. doi:10.1016/j.jenvman.2007.12.007

Zinatullina KM, Kasaikina OT, Kuzmin VA, Khrameeva NP. Pro- and antioxidant characteristics of natural thiols. Rus Chem Bull. 2018;67(4):726‒730. doi:10.1007/s11172-018-2129-0

Anderson ME. Glutathione and glutathione delivery compounds. Adv Pharmacol. 1996;38:65‒78. doi:10.1016/S1054-3589(08)60979-5

Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009;53:75–100. doi:10.1007/s12013-009-9043-х

Ivanova A, Gerasimova E, Gazizullina E. Study of antioxidant properties of agents from the perspective of their action mechanisms. Molec. 2020;25:4251. doi:10.3390/molecules25184251

Buck R P, Lindner E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl Chem. 1994;66(12):2527–2536. doi:10.1351/pac199466122527


Copyright (c) 2022 Elena R. Salimgareeva, Dinara I. Igdisanova, Daria S. Gordeeva, Anatoly I. Matern, Elena. A. Yarkova, Elena L. Gerasimova, Alla V. Ivanova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice