Cover Image

Electrochemical creatinine determination with metal-organic framework catalyst based on copper and acetylenedicarboxylic acid

Andrei V. Okhokhonin, Alsu A. Ibatullina, Yulia V. Izmozherova, Marina I. Stepanova, Anatoliy I. Matern, Alisa N. Kozitsina

Abstract


Fast and accurate determination of creatinine is critical in kidney function diagnostics. This paper discusses the usage of the metal-organic framework based on copper(II) and acetylenedicarboxylic acid (CuADCA) as a catalyst of electrochemical oxidation of creatinine, glucose and urea. CuADCA was synthesized by deprotonation with triethylamine for the first time. Successful synthesis was confirmed by FTIR and EDS. The material was characterized by SEM, EIS, and CV. CuADCA forms laminated-like flakes with diameter from 1 µm to 20 µm, which is consistent with the polymer-like structure. CV and EIS analyses showed that CuADCA immobilized on GCE acts as a catalyst in electrooxidation reaction of glucose, urea, and creatinine. The sensitivity of creatinine detection, 1057±99 µA/mM, was higher than the detection sensitivity of glucose and urea by more than 100 times with the limit of detection of 2 µM, so CuADCA is a promising material for further development of enzymeless sensors for creatinine.

Keywords


metal-organic framework; creatinine; voltammetry; Electrochemical catalyst; enzymeless determination

Full Text:

PDF

References


Yi F-Y, Chen D, Wu M-K, Han L, Jiang H-L. Chemical sensors based on metal–organic frameworks. ChemPlusChem. 2016;81(8):675–690. doi:10.1002/cplu.201600137

Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. TrAC Trends Anal Chem. 2022;157116735. doi:10.1016/j.trac.2022.116735

Chauhan S, Dahiya D, Sharma V, Khan N, Chaurasia D, Nadda AK, Varjani S, Pandey A, Bhargava PC. Advances from conventional to real time detection of heavy metal(loid)s for water monitoring: An overview of biosensing applications. Chemosphere. 2022;307136124. doi:10.1016/j.chemosphere.2022.136124

Niu Z, Liu Y, Li X, Yan K, Chen H. Electrochemical sensor for ultrasensitive detection of paraquat based on metal-organic frameworks and para-sulfonatocalix[4]arene-AuNPs composite. Chemosphere. 2022;307135570. doi:10.1016/j.chemosphere.2022.135570

Huang W, Xu Y, Wang Z, Liao K, Zhang Y, Sun Y. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta. 2022;249123612. doi:10.1016/j.talanta.2022.123612

Ma J, Yuan J, Xu Y, Jiang Y, Bai W, Zheng J. Ultrasensitive electrochemical determination of bisphenol A in food samples based on a strategy for activity enhancement of enzyme: Layer-by-layer self-assembly of tyrosinase between two-dimensional porphyrin metal–organic framework nanofilms. Chem Eng J. 2022;446137001. doi:10.1016/j.cej.2022.137001

Li W, Li Y, Wen X, Teng Y, Wang J, Yang T, Li X, Li L, Wang C. Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. J Membr Sci. 2022;648120369. doi:10.1016/j.memsci.2022.120369

Wu N, Guo H, Peng L, Chen Y, Sun L, Liu Y, Wei X, Yang W. Three-step post-synthetic modification metal-organic framework as a ratiometric fluorescent probe for the detection of creatinine. Microporous Mesoporous Mater. 2022;338111989. doi:10.1016/j.micromeso.2022.111989

Luo L, Xie Y, Hou S-L, Ma Y, Zhao B. Recyclable luminescent sensor for detecting creatinine based on a lanthanide–organic framework. Inorg Chem. 2022;61(26):9990–9996. doi:10.1021/acs.inorgchem.2c00850

Ma B, Guo H, Wang M, Li L, Jia X, Chen H, Xue R, Yang W. Electrocatalysis of Cu−MOF/graphene composite and its sensing application for electrochemical simultaneous determination of dopamine and paracetamol. Electroana. 2019;31(6):1002–1008. doi:10.1002/elan.201800890

Campbell MG, Sheberla D, Liu SF, Swager TM, Dincă M. Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew Chem Int Ed. 2015;54(14):4349–4352. doi:10.1002/anie.201411854

Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem Soc Rev. 2017;46(11):3185–3241. doi:10.1039/C7CS00122C

Mitewa M. Coordination properties of the bioligands creatinine and creatine in various reaction media. Coord Chem Rev. 1995;1401–25. doi:10.1016/0010-8545(94)01122-R

Ntep TJMM, Gramm VK, Ruschewitz U, Janiak C. Acetylenedicarboxylate as a linker in the engineering of coordination polymers and metal–organic frameworks: challenges and potential. Chem Commun. 2022;58(64):8900–8933. doi:10.1039/D2CC02665A

Xu W, Pan W-J, Zheng Y-Q. Syntheses and crystal structures of phthalato-, succinato-, maleato-, acetylenedicarboxylato-bridged [bis(2-pyridylcarbonyl)amide]copper(II) complexes. J Coord Chem. 2013;66(24):4415–4429. doi:10.1080/00958972.2013.862789

Shershnev VA, Shilov GV, Dzhardimalieva GI, Pomogailo AD, Izydorzak M, Leonowicz M. Synthesis and characteristics of acetylenedicarboxylic acid salts as precursors for obtaining of nanocomposites. Macromol Symp. 2012;317–318(1):180–186. doi:10.1002/masy.201100131

Sriramprabha R, Sekar M, Revathi R, Viswanathan C, Wilson J. Fe2O3/polyaniline supramolecular nanocomposite: A receptor free sensor platform for the quantitative determination of serum creatinine. Anal Chim Acta. 2020;1137103–1137114. doi:10.1016/j.aca.2020.09.004

Boobphahom S, Ruecha N, Rodthongkum N, Chailapakul O, Remcho VT. A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal Chim Acta. 2019;1083110–1083118. doi:10.1016/j.aca.2019.07.029

Fava EL, Prado TM do, Garcia-Filho A, Silva TA, Cincotto FH, Cruz de Moraes F, Faria RC, Fatibello-Filho O. Non-enzymatic electrochemical determination of creatinine using a novel screen-printed microcell. Talanta. 2020;207120277. doi:10.1016/j.talanta.2019.120277




DOI: https://doi.org/10.15826/chimtech.2023.10.2.01

Copyright (c) 2023 Andrei V. Okhokhonin, Alsu A. Ibatullina, Yulia V. Izmozherova, Marina I. Stepanova, Anatoliy I. Matern, Alisa N. Kozitsina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International