Cover Image

Membrane techniques for removal detergents and petroleum products from carwash effluents: a review

Eman S. Awad, Siraj M. Abdulla, T. M. Sabirova, Qusay F. Alsalhy

Abstract


One of the most significant urban services is the carwash, which generates large amounts of wastewater containing a variety of pollutants, including sand, gravel, suspended solids, surfactants, oil products, diesel cleaners, etc., that may cause environmental pollution when transferred to the sewage system without any treatment. The effective treatment is crucial to prevent environmental pollution as well as to recycle the water source. Contaminants are removed from carwash effluent using a variety of treatment technologies. This review focuses on identifying and comparing efficiency of using advanced commercial and modified membrane filtration techniques, meeting discharge standard regulations, to treat carwash impurities, especially detergents/surfactants (anionic surfactant) and petroleum products (oil/grease). The results of this review indicate that ultrafiltration membrane (UF) is the most common membrane filtration technology for carwash wastewater treatment. Additionally, the adoption of traditional pre-treatment processes may be advantageous before utilization of membrane process for treating carwash wastewater; although conventional treatment processes can produce a high quality of effluent, they are less effective than membrane systems.


Keywords


anionic surfactant; carwash; membrane filtration; modified membranes; water consumption; wastewater

Full Text:

PDF

References


Lau WJ, Ismail AF, Firdaus S. Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes. Sep Purif Technol. 2013;104:26–31. doi:10.1016/j.seppur.2012.11.012

Shete BS, Shinkar NP. Use of membrane to treat car wash wastewater. Int J Res Sci Adv Technol. 2014;1(3):13–19.

Gönder ZB, Balcıoğlu G, Kaya Y, Vergili I. Treatment of carwash wastewater by electrocoagulation using Ti electrode: optimization of the operating parameters. Int J Environ Sci Technol. 2019;16(12):8041–8052. doi:10.1007/s13762-019-02413-4

Magnago RF, Berselli D, Medeiros P. Treatment of wastewater from car wash by fenton and photo-fenton oxidative processes. J Eng Sci Technol. 2018;13(4):838–850.

Jalal Sadiq A, Shabeeb KM, Khalil BI, Alsalhy QF. Effect of embedding MWCNT-g-GO with PVC on the performance of PVC membranes for oily wastewater treatment. Chem Eng Commun. 2020. doi:10.1080/00986445.2019.1618845

Al-Ani DM, Al-Ani FH, Alsalhy QF, Ibrahim SS. Preparation and characterization of ultrafiltration membranes from PPSU-PES polymer blend for dye removal. Chem Eng Commun. 2021;208(1):41–59. doi:10.1080/00986445.2019.1683546

Al-Ani FH, Majdi HS, Ali JM, Al Rahawi AM, Alsalhy QF. Comparative study on CAS, UCT, and MBR configurations for nutrient removal from hospital wastewater. Desalin Water Treat. 2019;164:39–47. doi:10.5004/dwt.2019.24454

Alsalhy QF, Mohammed AA, Ahmed SH, Rashid KT, AlSaadi MA. Estimation of nanofiltration membrane transport parameters for cobalt ions removal from aqueous solutions. Desalin Water Treat. 2018;108:235–245. doi:10.5004/dwt.2018.21929

Alsalhy QF, Al-Ani FH, Al-Najar AE. A new Sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment. Biochem Eng J. 2018;133:130–139. doi:10.1016/j.bej.2018.02.007

Alsalhy QF, Almukhtar RS, Alani HA. Oil refinery wastewater treatment by using membrane bioreactor (MBR). Arab J Sci Eng. 2016;41(7):2439–2452. doi:10.1007/s13369-015-1881-9

Panizza M, Cerisola G. Applicability of electrochemical methods to carwash wastewaters for reuse. Part 1: Anodic oxidation with diamond and lead dioxide anodes. J Electroanal Chem. 2010;638(1):28–32. doi:10.1016/j.jelechem.2009.10.025

Soczka Mandac R, Bogunović B, Žagar D, Faganeli J. Riverine impact on the thermohaline properties, turbidity and suspended solids in a shallow bay (Bay of Koper, northern Adriatic Sea. Acta Adriat Int J Mar Sci. 2014;55(2):195–212.

Brown C. Water сonservation in the professional car wash industry. Int Carwash Assoc. 1999:8–15.

Der Van Bruggen B. Industrial process water recycling: Principles and examples. Environ Prog. 2005;24(4):417–425. doi:10.1002/ep.10112

Mirshahghassemi S, Aminzadeh B, Torabian A, Afshinnia K. Optimizing electrocoagulation and electro-Fenton process for treating car wash wastewater. Environ Heal Eng Manag. 2016;4(1):37–43. doi:10.15171/ehem.2017.06

Pinto ACS, et al. Carwash wastewater treatment by micro and ultrafiltration membranes: Effects of geometry, pore size, pressure difference and feed flow rate in transport properties. J Water Process Eng. 2017;17:143–148. doi:10.1016/j.jwpe.2017.03.012

Istirokhatun T, Destianti P, Hargianintya ., Oktiawan W, Susanto H. Treatment of car wash wastewater by UF membranes. AIP Conf Proc. 2015;1699. doi:10.1063/1.4938379

Uçar D. Membrane processes for the reuse of car washing wastewater. J Water Reuse Desalin. 2018;8(2):169–175. doi:10.2166/wrd.2017.036

Nagamani V. A Cost effective membrane integrated process for the treatment of vehicle wash wastewater. Int J Eng Res. 2020;8(12):833–837. doi:10.17577/ijertv8is120399

Tekere KMM, Sibanda T. An assessment of the physicochemical properties and toxicity potential of carwash effluents from professional carwash outlets in Gauteng Province, South Africa. Environ Sci Pollut Res. 2016;23(12):11876–11884. doi:10.1007/s11356-016-6370-5

Tu W-K, Chang C-C, Chang C-Y, Ji D-R, Tseng J-Y, Chiu C, Chen Y-H, Chang C-F, Yu Y. Treatment of car wash wastewater via novel technologies for recycling and reutilization. J Env Eng Manag. 2009;19(1):49–57.

Moazzem S, Wills J, Fan L, Roddick F, Jegatheesan V. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse. Environ Sci Pollut Res. 2018;25(9):8654–8668. doi:10.1007/s11356-017-1121-9

Kiran SA, Arthanareeswaran G, Thuyavan YL, Ismail AF. Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem. Ecotoxicol Environ Saf. 2015;121:186–192. doi:10.1016/j.ecoenv.2015.04.001

Tan X, Tang L. Application of enhanced coagulation aided by UF membrane for car wash wastewater treatment. Int Conf Bioinform Biomed Eng. 2008:3653–3656. doi:10.1109/ICBBE.2008.415

Kamelian FS, Mousavi SM, Ahmadpour A, Ghaffarian V. Preparation of acrylonitrile-butadiene-styrene membrane: Investigation of solvent/nonsolvent type and additive concentration. Kor J Chem Eng. 2014;31(8):1399–1404. doi:10.1007/s11814-014-0068-5

Boussu K, Kindts C, Vandecasteele C, Van der Bruggen B. Applicability of nanofiltration in the carwash industry. Sep Purif Technol. 2007;54(2):139–146. doi:10.1016/j.seppur.2006.08.024

Boussu K, et al. Technical and economical evaluation of water recycling in the carwash industry with membrane processes. Water Sci Technol. 2008;57(7):1131–1135. doi:10.2166/wst.2008.236

Knepper TP, Barceló D, De Voogt P. Comprehensive analytical chemistry-analysis and fate of surfactants in the aquatic environment. Elsevier, 2003.

Tadros TF. An introduction to surfactants. Berlin/Boston: Walter de Gruyter GmbH, 2014.

Belhaj AF, Elraies KA, Mahmood SM, Zulkifli NN, Akbari S, Hussien OSE. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. J Pet Explor Prod Technol. 2020;10(1):125–137. doi:10.1007/s13202-019-0685-y

Ibrahim MSS, Hashim NH. Removal of oil and grease and anionic surfactants in synthetic car wash wastewater using kapok fiber: A batch-scale study. Malaysian J Anal Sci. 2018;22(4):735–741. doi:10.17576/mjas-2018-2204-20

Schulz R, Bruttel P. Titrimetric determination of surfactants and pharmaceuticals: modern methods for analytical practice. First Metrohm. 1999.

A. P. H. Association, Standard methods for the examination of water and wastewater. 22nd. Washington, DC Am Public Heal Assoc, 2012.

Yasin S, Iqbal T, Arshad Z, Rustam M, Zafar M. Environmental pollution from automobile vehicle service stations. J Qual Technol Manag. 2012;8(1):61–70.

Tang L, Tan XJ, Cui FY, Zhou Q, Yin J. Reuse of carwash wastewater with hollow fiber membrane aided by enhanced coagulation and activated carbon treatments. Water Sci Technol. 2007. doi:10.2166/wst.2007.788

Zaneti R, Etchepare R, Rubio J. Car wash wastewater reclamation. Full-scale application and upcoming features. Resour Conserv Recycl. 2011;55(11):953–959. doi:10.1016/j.resconrec.2011.05.002

Schlosberg RH, Chu JW, Knudsen GA, Suciu EN, Aldrich HS. High stability esters for synthetic lubricant applications. Tribol Lubr Technol. 2001;57(2):21.

Zaneti RN, Etchepare R, Rubio J. Car wash wastewater treatment and water reuse – a case study. Water Sci Technol. 2013;67(1):82–88. doi:10.2166/wst.2012.492

Obinia U, Afiukwaa JN. Environmental and health impact of waste engine oil disposal in Nigeria: a review. Educ Sci J Policy Rev Curric Dev. 2013;3(3):54–61.

Sasi Kumar N, Chauhan MS. Treatment of car washing unit wastewater – a review. Water Qual Manag. 2018:247–255. doi:10.1007/978-981-10-5795-3_21

Janik H, Kupiec A. Trends in modern car washing. Polish J Environ Stud. 2007;16(6):927–931.

Alsalhy QF. Influence of spinning conditions on the morphology, pore size, pore size distribution, mechanical properties, and performance of PVC hollow fiber membranes. Sep Sci Technol. 2012;48(2):234–245. doi:10.1080/01496395.2012.681746

Rashid WT, Alkadir IA, Jalhoom MG, Rashid KT. Blending to performance flat sheet membrane to remove some heavy and radioactive elements from phosphogypsum waste. Eng Technol J. 2021;39(3A):382–393. doi:10.30684/etj.v39i3a.1762

Rashid KT, et al. Novel water-soluble poly (terephthalic-co-glycerol-g-fumaric acid) copolymer nanoparticles harnessed as pore formers for polyethersulfone membrane modification: permeability–selectivity tradeoff manipulation. Water. 2022;14(9):1507. doi:10.3390/w14091507

Urbański R, Góralska E, Bart H-J, Szymanowski J. Ultrafiltration of surfactant solutions. J Colloid Interface Sci. 2002;253(2):419–426. doi:10.1006/jcis.2002.8539

Awad ES, Sabirova TM, Tretyakova NA, Alsalhy QF, Figoli A, Salih IK. A mini-review of enhancing ultrafiltration membranes (Uf) for wastewater treatment: Performance and stability. Chem Eng. 2021;5(3). doi:10.3390/chemengineering5030034

Zrelli A, Bessadok A, Alsalhy Q. Important parameters of ceramic membranes derived from oasis waste and its application for car wash wastewater treatment. J Membr Sci Res. 2022;8(1):1–8. doi:10.22079/JMSR.2021.529855.1488

Sadiq AJ, et al. Comparative study of embedded functionalised MWCNTs and GO in Ultrafiltration (UF) PVC membrane: interaction mechanisms and performance. Int J Environ Anal Chem. 2020:1–22. doi:10.1080/03067319.2020.1858073

Jiku Z, Yanbin Y, Huiye W, Zhibiao D. CFU combined process for the treatment of oily car washing wastewater. Appl Mech Mater. 2013;253–255:999–1004. doi:10.4028/www.scientific.net/AMM.253-255.999




DOI: https://doi.org/10.15826/chimtech.2023.10.1.07

Copyright (c) 2022 Eman S. Awad, Siraj M. Abdulla, T.M. Sabirova, Qusay F. Alsalhy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice