Cover Image

An overview of wastewater treatment using combined heterogeneous photocatalysis and membrane distillation

Sarah A. Abdulrahman, Salah S. Ibraheem, Zainab Y. Shnain

Abstract


The need for efficient remediation solutions to wastewater has risen due to the concerning prevalence of toxic organic pollutants. It is possible for the linked photocatalysis-membrane separation system to concurrently achieve the photoreaction of pollutants and their removal from wastewater in order to accomplish the goal of completely purifying the wastewater. This investigation's objective is to provide analytical overview of the photocatalytic and membrane coupling process, photocatalytic membrane reactors, and the potential applications of these technologies in the treatment of wastewater for the persistent organic matter removal. In the review, an examination of photocatalytic and membrane processes to remove organic compounds from wastewater is presented. Based on the literature analysis, it was observed that the application of photocatalytic membrane reactors is significantly influenced by a wide variety of factors. Some of these factors include pollutant concentration, dissolved oxygen, aeration, pH, and hydraulic retention time. Light intensity is another factor that has a significant influence. It was also revealed how distillation membranes work when integrated with photocatalytic process. This brief overview will help researchers understand how successful coupled photocatalytic and membrane distillation are in the treatment of wastewater containing organic pollutants.


Keywords


heterogeneous photo-catalysis; membrane; photo catalytic; wastewater treatment; membrane distillation

Full Text:

PDF

References


Sekharan S, Samal DR, Phuleria HC, Chandel MK, Gedam S, Kumar R, et al. River pollution monitoring over an industrial catchment in urban ecosystem: Challenges and proposed geospatial framework. Environ Challenges. 2022;7:100496. doi:10.1016/j.envc.2022.100496

Wang Y, Wei H, Wang Y, Peng C, Dai J. Chinese industrial water pollution and the prevention trends: An assessment based on environmental complaint reporting system (ECRS). Alexandria Eng J. 2021;60:5803–5812. doi:10.1016/j.aej.2021.04.015

Afolalu SA, Ikumapayi OM, Ogedengbe TS, Kazeem RA, Ogundipe AT. Waste pollution, wastewater and effluent treatment methods – An overview. Mater Today Proc. 2022;62:3282–3288. doi:10.1016/j.matpr.2022.04.231

Rautela R, Arya S, Vishwakarma S, Lee J, Kim K-H, Kumar S. E-waste management and its effects on the environment and human health. Sci Total Environ. 2021;773:145623. doi:10.1016/j.scitotenv.2021.145623

El Zrelli R, Rabaoui L, Ben Alaya M, Castet S, Zouiten C, Bejaoui N, et al. Decadal effects of solid industrial wastes on the coastal environment: Gulf of Gabes (Tunisia, Southern Mediterranean Sea) as an example. Estuar Coast Shelf Sci. 2019;224:281–288. doi:10.1016/j.ecss.2019.04.021

da Silva RF, Carneiro CN, do C. de Sousa CB, J. V. Gomez F, Espino M, Boiteux J, et al. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchem J. 2022;175:107184. doi:10.1016/j.microc.2022.107184

Palencia M, Lerma TA, Garcés V, Mora MA, Martínez JM, Palencia SL. Chapter 10 – Eco-friendly chemical transformations: strategies and technologies based on green chemistry principles, click chemistry, and eco-sustainable development. In: Palencia M, Lerma TA, Garcés V, Mora MA, Martínez JM, Palencia SL, editors. Eco-friendly Funct. Polym., Elsevier; 2021, p. 155–165. doi:10.1016/B978-0-12-821842-6.00027-0

Lin R, Li Y, Yong T, Cao W, Wu J, Shen Y. Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: a review. J Environ Manage. 2022;306:114460. doi:10.1016/j.jenvman.2022.114460

Zhao M, Wang Y, Liu M, Chen W, Lin Y, Li C, et al. Photocatalytic treatment for antibacterials wastewater with high-concentration using ZnFe2O4/Bi7O9I3 magnetic composite with optimized morphology and structure. Colloids Surfaces A Physicochem Eng Asp. 2022;649:129375. doi:10.1016/j.colsurfa.2022.129375

Hassani A, Khataee A, Karaca S. Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. J Mol Catal A Chem. 2015;409:149–161. doi:10.1016/j.molcata.2015.08.020

Ng KH, Lee CH, Khan MR, Cheng CK. Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chem Eng J. 2016;286:282–290. doi:10.1016/j.cej.2015.10.072

Ahmed S, Rasul MG, Sattar MA, Jahirul MI. Phenol degradation of waste and stormwater on a flat plate photocatalytic reactor with TiO2 on glass slide: An experimental and modelling investigation. J Water Process Eng. 2022;47:102769. doi:10.1016/j.jwpe.2022.102769

Nidheesh P V, Gandhimathi R. Trends in electro-Fenton process for water and wastewater treatment : An overview. Desalination. 2012;299:1–15. doi:10.1016/j.desal.2012.05.011

Szczepanik B. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl Clay Sci. 2017;141:227–39. doi:10.1016/j.clay.2017.02.029

Osman AI, Skillen NC, Robertson PKJ, Rooney DW, Morgan K. Exploring the photocatalytic hydrogen production potential of titania doped with alumina derived from foil waste. Int J Hydrog Energy. 2020;45:34494–34502. doi:10.1016/j.ijhydene.2020.02.065

Chen L, Xu P, Wang H. Photocatalytic membrane reactors for produced water treatment and reuse: Fundamentals, affecting factors, rational design, and evaluation metrics. J Hazard Mater. 2022;424:127493. doi:10.1016/j.jhazmat.2021.127493

Nasrollahi N, Ghalamchi L, Vatanpour V, Khataee A. Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. J Ind Eng Chem. 2021;93:101–116. doi:10.1016/j.jiec.2020.09.031

Nguyen V-H, Tran QB, Nguyen XC, Hai LT, Ho TTT, Shokouhimehr M, et al. Submerged photocatalytic membrane reactor with suspended and immobilized N-doped TiO2 under visible irradiation for diclofenac removal from wastewater. Process Saf Environ Prot. 2020;142:229–237. doi:10.1016/j.psep.2020.05.041

Phan DD, Babick F, Trịnh THT, Nguyen MT, Samhaber W, Stintz M. Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes. Chem Eng Sci. 2018;191:332–42. doi:10.1016/j.ces.2018.06.062

Brunetti A, Pomilla FR, Marcì G, Garcia-Lopez EI, Fontananova E, Palmisano L, et al. CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels. Appl Catal B Environ. 2019;255:117779. doi:10.1016/j.apcatb.2019.117779

Rani CN, Karthikeyan S, Prince Arockia Doss S. Photocatalytic ultrafiltration membrane reactors in water and wastewater treatment – A review. Chem Eng Process – Process Intensif. 2021;165:108445. doi:10.1016/j.cep.2021.108445

Xie W, Li T, Tiraferri A, Drioli E, Figoli A, Crittenden JC, et al. Toward the next generation of sustainable membranes from green chemistry principles. ACS Sustain Chem Eng. 2021;9:50–75. doi:10.1021/acssuschemeng.0c07119

Molinari R, Lavorato C, Argurio P. The Evolution of photocatalytic membrane reactors over the last 20 years: a state of the art perspective. Catalysts. 2021;11. doi:10.3390/catal11070775

Molinari R, Lavorato C, Argurio P, Szymański K, Darowna D, Mozia S. Overview of photocatalytic membrane reactors in organic synthesis, energy storage and environmental applications. Catalysts. 2019;9. doi:10.3390/catal9030239

Liu B, Fang Y, Li Z, Xu S. Visible-light nanostructured photocatalysts – A review. J Nanosci Nanotechnol. 2015;15:889–920. doi:10.1166/jnn.2015.9784

Fujishimma A, Honda K. Electrochemical Photolysis of water at a semiconductor electrode. Nat. 1972;238:37–38. doi:10.1038/238037a0

Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J Environ Manage. 2018;219:189–207. doi:10.1016/j.jenvman.2018.04.103

Gomes J, Lincho J, Domingues E, Quinta-Ferreira RM, Martins RC. N-TiO2 photocatalysts: A review of their characteristics and capacity for emerging contaminants removal. Water (Switzerland). 2019;11. doi:10.3390/w11020373

Argurio P, Fontananova E, Molinari R, Drioli E. Photocatalytic Membranes in photocatalytic membrane reactors. Processes. 2018;6. doi:10.3390/pr6090162

Fujita S ichiro, Kawamori H, Honda D, Yoshida H, Arai M. Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Appl Catal B Environ. 2016;181:818–24. doi:10.1016/j.apcatb.2015.08.048

Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Hasnain Isa M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J Ind Eng Chem. 2015;26:1–36. doi:10.1016/j.jiec.2014.10.043

Achouri F, Corbel S, Aboulaich A, Balan L, Ghrabi A, Ben Said M, et al. Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J Phys Chem Solids. 2014;75:1081–1087. doi:10.1016/j.jpcs.2014.05.013

Pan F, Xiang X, Du Z, Sarnello E, Li T, Li Y. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Appl Catal B Environ. 2020;260:118189. doi:10.1016/j.apcatb.2019.118189

Khairy M, Zakaria W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt J Pet. 2014;23:419–426. doi:10.1016/j.ejpe.2014.09.010

Jung M, Hart JN, Scott J, Ng YH, Jing Y, Amal R. Exploring Cu oxidation state on TiO2 and its transformation during photocatalytic hydrogen evolution. Appl Catal A Gen. 2016;521:190–201. doi:10.1016/j.apcata.2015.11.013

Cai J, Shen J, Zhang X, Ng YH, Huang J, Guo W, et al. Light-driven sustainable hydrogen production utilizing TiO2 nanostructures: A Review. Small Methods. 2019;3:1–24. doi:10.1002/smtd.201800184

Wang J, Yu Y, Zhang L. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl Catal B Environ. 2013;136–137:112–121. doi:10.1016/j.apcatb.2013.02.009

Camposeco R, Castillo S, Rodriguez-Gonzalez V, Hinojosa-Reyes M, Mejía-Centeno I. Tailored TiO2 nanostructures for supporting Rh3O2 and Rh0 nanoparticles: Enhanced photocatalytic H2 production. J Photochem Photobiol A Chem. 2018;356:92–101. doi:10.1016/j.jphotochem.2017.12.037

Zielińska A, Kowalska E, Sobczak JW, Łącka I, Gazda M, Ohtani B, et al. Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity. Sep Purif Technol. 2010;72:309–318. doi:10.1016/j.seppur.2010.03.002

Kumaravel V, Mathew S, Bartlett J, Pillai SC. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl Catal B Environ. 2019;244:1021–1064. doi:10.1016/j.apcatb.2018.11.080

Ning R, Yan Z, Lu Z, Wang Q, Wu Z, Dai W, et al. Photocatalytic membrane for in situ enhanced removal of semi-volatile organic compounds in membrane distillation under visible light. Sep Purif Technol. 2022;292:121068. doi:10.1016/j.seppur.2022.121068

Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J Clean Prod. 2020;268:121725. doi:10.1016/j.jclepro.2020.121725

Nahar S, Hasan MR, Kadhum AAH, Hasan HA, Zain MFM. Photocatalytic degradation of organic pollutants over visible light active plasmonic Ag nanoparticle loaded Ag2SO3 photocatalysts. J Photochem Photobiol A Chem. 2019;375:191–200. doi:10.1016/j.jphotochem.2019.02.025

Liu B, Christiansen K, Parnas R, Xu Z, Li B. Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol. 86th Annu Water Environ Fed Tech Exhib Conf WEFTEC. 2013;4:2004–2013. doi:10.1016/j.ijhydene.2012.12.135

Parida KM, Dash SS, Das DP. Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods. J Colloid Interface Sci. 2006;298:787–793. doi:10.1016/j.jcis.2005.12.053

Parida SK, Dash S, Patel S, Mishra BK. Adsorption of organic molecules on silica surface. Adv Colloid Interface Sci. 2006;121:77–110. doi:10.1016/j.cis.2006.05.028

Nasr O, Mohamed O, Al-Shirbini A-S, Abdel-Wahab A-M. Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light. J Photochem Photobiol A Chem. 2019;374:185–193. doi:10.1016/j.jphotochem.2019.01.032

Wu Y, Chen X, Cao J, Zhu Y, Yuan W, Hu Z, et al. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2 @TiO2 with sulfur/oxygen dual-defect. Appl Catal B Environ. 2022;303:120878. doi:10.1016/j.apcatb.2021.120878

Su J, Yu S, Xu M, Guo Y, Sun X, Fan Y, et al. Enhanced visible light photocatalytic performances of few-layer MoS2@TiO2 hollow spheres heterostructures. Mater Res Bull. 2020;130:110936. doi:10.1016/j.materresbull.2020.110936

Zhang T, Chen Y, Yang X, Chen J, Zhong J, Li J, et al. Enhanced photocatalytic detoxication properties of OVs-rich Pd/N–TiO2 heterojunctions: excellent charge separation and mechanism insight. Mater Today Chem. 2023;28:101358. doi:10.1016/j.mtchem.2022.101358

Nhu VTT, QuangMinh D, Duy NN, QuocHien N. Photocatalytic degradation of azo dye (methyl red) in water under visible light using Ag-Ni/TiO2 Sythesized by irradiation method. Int J Environ Agric Biotechnol. 2017;2:529–538. doi:10.22161/ijeab/2.1.66

Niu Z-L, Yi S-S, Li C-Q, Liu Y, Pang Q-Q, Liu Z-Y, et al. Supporting bimetallic sulfide on 3D TiO2 hollow shells to boost photocatalytic activity. Chem Eng J. 2020;390:124602. doi:10.1016/j.cej.2020.124602

Gao L-M, Zhao J-H, Li T, Li R, Xie H-Q, Zhu P-L, et al. High-performance TiO2 photocatalyst produced by the versatile functions of the tiny bimetallic MOF-derived NiCoS-porous carbon cocatalyst. CrystEngComm. 2019;21:3686–3693. doi:10.1039/C9CE00529C

Wu M, Zhang J, Liu C, Gong Y, Wang R, He B, et al. Rational design and fabrication of noble-metal-free NixP cocatalyst embedded 3D N-TiO2/g-C3N4 Heterojunctions with Enhanced photocatalytic hydrogen evolution. ChemCatChem. 2018;10:3069–3077. doi:10.1002/cctc.201800197

Wu K, Wu P, Zhu J, Liu C, Dong X, Wu J, et al. Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chem Eng J. 2019;360:221–230. doi:10.1016/j.cej.2018.11.211

Song R, Zhou W, Luo B, Jing D. Highly efficient photocatalytic H2 evolution using TiO2 nanoparticles integrated with electrocatalytic metal phosphides as cocatalysts. Appl Surf Sci. 2017;416:957–964. doi:10.1016/j.apsusc.2017.04.221

Zhang J, Yu Z, Gao Z, Ge H, Zhao S, Chen C, et al. Porous TiO2 Nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angew Chemie Int Ed. 2017;56:816–820. doi:10.1002/anie.201611137

Cao B, Li G, Li H. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation. Appl Catal B Environ. 2016;194:42–49. doi:10.1016/j.apcatb.2016.04.033

Wang Y, Cao S, Huan Y, Nie T, Ji Z, Bai Z, et al. The effect of composite catalyst on Cu2O/TiO2 heterojunction photocathodes for efficient water splitting. Appl Surf Sci. 2020;526:146700. doi:10.1016/j.apsusc.2020.146700

Babu B, Mallikarjuna K, Reddy CV, Park J. Facile synthesis of Cu@TiO2 core shell nanowires for efficient photocatalysis. Mater Lett 2016;176:265–269. doi:10.1016/j.matlet.2016.04.146

Hou T, Li Q, Zhang Y, Zhu W, Yu K, Wang S, et al. Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Appl Catal B Environ. 2020;273:119072. doi:10.1016/j.apcatb.2020.119072

Dan M, Li J, Chen C, Xiang J, Zhong Y, Wu F, et al. MoS2 and Ti3C2 Ensembles into TiO2 for efficient photocatalytic hydrogen evolution: dual-bonding interactions and capacitive effect trigger the intrinsic activities. Energy Technol. 2022;10:2100188. doi:10.1002/ente.202100188

Yang Y, Yan K, Zhang J. Dual non-enzymatic glucose sensing on Ni(OH)2/TiO2 photoanode under visible light illumination. Electrochim Acta. 2017;228:28–35. doi:10.1016/j.electacta.2017.01.050

Xiong Y, Gu D, Deng X, Tüysüz H, van Gastel M, Schüth F, et al. High surface area black TiO2 templated from ordered mesoporous carbon for solar driven hydrogen evolution. Microporous Mesoporous Mater. 2018;268:162–169. doi:10.1016/j.micromeso.2018.04.018

Balog Á, Samu GF, Pető S, Janáky C. The Mystery of Black TiO2: insights from combined surface science and in situ electrochemical methods. ACS Mater Au. 2021;1:157–168. doi:10.1021/acsmaterialsau.1c00020

Wei T, Zhu Y, Wu Y, An X, Liu L-M. Effect of Single-Atom Cocatalysts on the Activity of Faceted TiO2 Photocatalysts. Langmuir. 2019;35:391–7. doi:10.1021/acs.langmuir.8b03488

Chen Y, Ji S, Sun W, Lei Y, Wang Q, Li A, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chemie Int Edю 2020;59:1295–1301. doi:10.1002/anie.201912439

Wang Y, Zhang Y, Yu W, Chen F, Ma T, Huang H. Single-atom catalysts for energy conversion. J Mater Chem A. 2023;11:2568–94. doi:10.1039/D2TA09024D

Wang W, Liu S, Nie L, Cheng B, Yu J. Enhanced photocatalytic H2-production activity of TiO2 using Ni(NO3)2 as an additive. Phys Chem Chem Phys. 2013;15:12033–12039. doi:10.1039/c2cp43628k

Kumar A, Pandey G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater Sci Eng Int J. 2017;1:106–114. doi:10.15406/mseij.2017.01.00018

Amani-Ghadim AR, Dorraji MSS. Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Appl Catal B Environ. 2015;163:539–546. doi:10.1016/j.apcatb.2014.08.020

Tohma H, Gülçin İ, Bursal E, Gören AC, Alwasel SH, Köksal E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J Food Meas Charact. 2017;11:556–566. doi:10.1007/s11694-016-9423-z

Chamani H, Woloszyn J, Matsuura T, Rana D, Lan CQ. Pore wetting in membrane distillation: A comprehensive review. Prog Mater Sci. 2021;122:100843. doi:10.1016/j.pmatsci.2021.100843

Rezaei M, Warsinger DM, Lienhard V JH, Duke MC, Matsuura T, Samhaber WM. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Res. 2018;139:329–52. doi:10.1016/j.watres.2018.03.058

Keskin B, Ersahin ME, Ozgun H, Koyuncu I. Pilot and full-scale applications of membrane processes for textile wastewater treatment: A critical review. J Water Process Eng. 2021;42:102172. doi:10.1016/j.jwpe.2021.102172

Lou X-Y, Xu Z, Bai A-P, Resina-Gallego M, Ji Z-G. Separation and recycling of concentrated heavy metal wastewater by tube membrane distillation integrated with crystallization. Membranes (Basel). 2020;10. doi:10.3390/membranes10010019

Ruiz-Aguirre A, Polo-López MI, Fernández-Ibáñez P, Zaragoza G. Integration of Membrane Distillation with solar photo-Fenton for purification of water contaminated with Bacillus sp. and Clostridium sp. spores. Sci Total Environ. 2017;595:110–118. doi:10.1016/j.scitotenv.2017.03.238

Madalosso HB, Machado R, Hotza D, Marangoni C. Membrane Surface modification by electrospinning, coating, and plasma for membrane distillation applications: a state-of-the-art review. Adv Eng Mater 2021;23:2001456. doi:10.1002/adem.202001456

Tang N, Jia Q, Zhang H, Li J, Cao S. Preparation and morphological characterization of narrow pore size distributed polypropylene hydrophobic membranes for vacuum membrane distillation via thermally induced phase separation. Desalination. 2010;256:27–36. doi:10.1016/j.desal.2010.02.024

Drioli E, Ali A, Macedonio F. Membrane distillation: Recent developments and perspectives. Desalination. 2015;356:56–84. doi:10.1016/j.desal.2014.10.028

Jacob P, Phungsai P, Fukushi K, Visvanathan C. Direct contact membrane distillation for anaerobic effluent treatment. J Memb Sci. 2015;475:330–339. doi:10.1016/j.memsci.2014.10.021

Yatmaz HC, Dizge N, Kurt MS. Combination of photocatalytic and membrane distillation hybrid processes for reactive dyes treatment. Environ Technol. 2017;38:2743–2751. doi:10.1080/09593330.2016.1276222

Mozia S, Morawski AW, Toyoda M, Tsumura T. Integration of photocatalysis and membrane distillation for removal of mono- and poly-azo dyes from water. Desalination. 2010;250:666–672. doi:10.1016/j.desal.2009.06.075

Zou Q, Zhang Z, Li H, Pei W, Ding M, Xie Z, et al. Synergistic removal of organic pollutant and metal ions in photocatalysis-membrane distillation system. Appl Catal B Environ. 2020;264:118463. doi:10.1016/j.apcatb.2019.118463

Laqbaqbi M, García-Payo MC, Khayet M, El Kharraz J, Chaouch M. Application of direct contact membrane distillation for textile wastewater treatment and fouling study. Sep Purif Technol. 2019;209:815–825. doi:10.1016/j.seppur.2018.09.031

Szymański K, Gryta M, Darowna D, Mozia S. A new submerged photocatalytic membrane reactor based on membrane distillation for ketoprofen removal from various aqueous matrices. Chem Eng J. 2022;435:134872. doi:10.1016/j.cej.2022.134872

Li C, Deng W, Gao C, Xiang X, Feng X, Batchelor B, et al. Membrane distillation coupled with a novel two-stage pretreatment process for petrochemical wastewater treatment and reuse. Sep Purif Technol. 2019;224:23–32. doi:10.1016/j.seppur.2019.05.007

Guo J, Yan DYS, Lam FL-Y, Deka BJ, Lv X, Ng YH, et al. Self-cleaning BiOBr/Ag photocatalytic membrane for membrane regeneration under visible light in membrane distillation. Chem Eng J. 2019;378:122137. doi:10.1016/j.cej.2019.122137

Liu F, Yao H, Sun S, Tao W, Wei T, Sun P. Photo-Fenton activation mechanism and antifouling performance of an FeOCl-coated ceramic membrane. Chem Eng J. 2020;402:125477. doi:10.1016/j.cej.2020.125477

Serrà A, Philippe L, Perreault F, Garcia-Segura S. Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. Water Res. 2021;188. doi:10.1016/j.watres.2020.116543




DOI: https://doi.org/10.15826/chimtech.2023.10.1.14

Copyright (c) 2023 Sarah A. Abdulrahman, Salah S. Ibraheem, Zainab Y. Shnain

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International