Cover Image

Effect of Sn doping on sinterability and electrical conductivity of strontium hafnate

Adelya S. Khaliullina, Anastasia N. Meshcherskikh, Liliya A. Dunyushkina


The effect of isovalent substitution of hafnium by tin in strontium hafnate on sinterability and electrical conductivity was studied for the first time. The ceramic samples SrHfxSn1–xO3–δ (x = 0–0.16) were synthesized by solid-state reaction and sintered at 1600 °C for 5 h. The samples were examined using the methods of X-ray diffraction, scanning electron microscopy, impedance spectroscopy, and four-probe direct current technique. It was shown that all samples were phase pure and had the orthorhombic structure of SrHfO3 with the Pnma space group. Sn doping resulted in an increase in grain size, relative density and conductivity; the sample with = 0.08 demonstrated the highest conductivity, which was ~830 times greater than that of undoped strontium hafnate at 600 °C. The conductivity of SrHf0.92Sn0.08O3–δ was 4.1∙10–6 S cm–1 at 800 °C in dry air. The possible reasons for the effect of Sn on the electrical properties of strontium hafnate were discussed.


strontium hafnate; perovskite; electrical conductivity; electrolyte

Full Text:



Hwang SC, Choi GM. The mixed ionic and electronic con-ductivity of CaZrO3 with cation nonstoichiometry and oxy-gen partial pressure. Solid State Ionics. 2008;179:1042–1045. doi:10.1016/j.ssi.2007.11.034

Wang C, Xu X, Yu H, Wen Y, Zhao K. A study of the solid electrolyte Y2O3 doped CaZrO3. Solid State Ionics. 1988;28–30:542–545. doi:10.1016/s0167-2738(88)80099-7

Yugami H, Naito H, Arashi H. Fabrication of SrMO3, (M = Ce and Zr) thin films and SrCeO3/SrZrO3, superlattices by laser ablation. Appl Surf Sci. 1997:113–114:222–226. doi:10.1016/S0169-4332(96)00899-9

Saini DS, Bhattacharya D. Electrical properties of BaZrO3 Ceramic synthesized by a flash pyrolisys process. AIP Conf Proceed. 2016;1724:020104-1–020104-8. doi:10.1063/1.4945224

Nomura K, Kageyama H. Transport properties of Ba(Zr0,8Y0,2)O3−δ perovskite. Solid State Ionics. 2007;178:661–665. doi:10.1016/j.ssi.2007.02.010

Weng Z, Huang H, Li X, Zhang Y, Shao R, Yi Y, Lu Y, Zeng X, Zou J, Chen L, Li W, Meng Y, Asefa T, Huang C. Coordina-tion Tailoring of epitaxial perovskite-derived iron oxide films for efficient water oxidation electrocatalysis. ACS Catalysis. 2023;13(4):2751–2760. doi:10.1021/acscatal.2c05147

Farooq N, Luque R, Len T, Osman SM, Qureshi AM, Nazir MA, ur Rehman A. Design of SrZr0.1Mn0.4Mo0.4Y0.1O3–δ hetero-structured with ZnO as electrolyte material: structural, op-tical and electrochemical behavior at low temperatures. Ceram Int. 2023;49(2):2174–2182. doi:10.1016/j.ceramint.2022.09.184

Iwahara H, Esaka T, Uchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics. 1981;3–4:359–363. doi:10.1016/0167-2738(81)90113-2

Iwahara H, Uchida H, Tanaka S. High temperature type proton conductor based on SrCeO3 and its application to sol-id electrolyte fuel cells. Solid State Ionics. 1983;9–10:1021–1025. doi:10.1016/0167-2738(83)90125-X

Iwahara H, Uchida H, Maeda N. High temperature fuel and steam electrolysis cells using proton conductive solid elec-trolytes. J Power Sources. 1982;7(3):293–301. doi:10.1016/0378-7753(82)80018-9

Takahashi T, Iwahara H. Solid state ionics: proton conduc-tion in perovskite type solid solutions. Rev Chim Miner. 1980;17(4):243–253. doi:10.1002/chin.198114014

Sammes N, Phillips R, Smirnova A. Proton conductivity in stoichiometric and sub-stoichiometric yittrium doped SrCeO3 ceramic electrolytes. J Power Sources. 2004;134(2):153–159. doi:10.1016/j.jpowsour.2004.02.036

LÜ J, Wang L, Fan L, Li Y, Dai L, Guo H. Chemical stability of doped BaCeO3–BaZrO3 solid solutions in different atmos-pheres. J Rare Earths. 2008;26:505–510. doi:10.1016/S1002-0721(08)60127-1

Choi SM, Lee JH, Choi MB, Hong J, Yoon KJ, Kim BK, Lee HW, Lee JH. Determination of electronic and ionic partial conductivities of BaCeO3 with Yb and In doping. J Electro-chem Soc. 2015;162(7):F789–F795. doi:10.1149/2.0011508jes

Shrivastava UN, Duncan KL, Chung JN. Experimentally validated numerical modeling of Eu doped SrCeO3 mem-brane for hydrogen separation. Int J Hydrog Energy. 2012;37(20):15350–15358. doi:10.1016/j.ijhydene.2012.07.061

Zhang C, Zhao H, Zhai S. Electrical conduction behavior of proton conductor BaCe1–xSmxO3–δ in the intermediate temperature range. Int J Hydrogen Energy. 2011;36(5):3649–3657. doi:10.1016/j.ijhydene.2010.12.087

Janke D. Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts. Metall Trans B. 1982;13B:227–235. doi:10.1007/BF02664579

Bhide SV, Virkar AV. Stability of AB’1/2B’1/2O3-type mixed Perovskite proton conductors. J Electrochem Soc. 1999;146(12):4386–4392. doi:10.1149/1.1392648

Kato K, Han D, Uda T. Transport properties of proton con-ductive Y-doped BaHfO3 and Ca or Sr-substituted Y-doped BaZrO3. J Am Ceram Soc. 2019;102(3):1201–1210. doi:10.1111/jace.15946

Sun W, Zhu Z, Shi Z, Liu W. Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3–δ for solid oxide fuel cells. J Power Sources. 2013;229:95–101. doi:10.1016/j.jpowsour.2012.12.017

Snijkers FMM, Buekenhoudt A, Luyten JJ, Cooymans J, Mertens M. Proton conductivity in perovskite type yttrium doped barium hafnate. Scr Mater. 2004;51:1129–1134. doi:10.1016/j.scriptamat.2004.08.021

Yang W, Wang L, Li Y, Zhou H, He Z, Han C, Dai L. An easily sintered, chemically stable indium and tin co-doped barium hafnate electrolyte for hydrogen separation. J Alloys Compd. 2021;868:159117. doi:10.1016/j.jallcom.2021.159117

Bevillon E, Hermet J, Dezanneau G, Geneste G. How dopant size influences the protonic energy landscape in BaSn1–xMxO3–x/2 (M = Ga, Sc, In, Y, Gd, La), J. Mater Chem A. 2014;2(2):460–471. doi:10.1039/c3ta12870a

Loken A, Kjolseth C, Haugsrud R. Electrical conductivity and TG-DSC study of hydration of Sc-doped CaSnO3 and Ca-ZrO3. Solid State Ionics. 2014;267:61–67. doi:10.1016/j.ssi.2014.09.006

Gorelov VP, Balakireva VB, Kuz’min AV. Ion conductivity of perovskites CaZr1–xScxO3–a (x=0.03–0.20) in hydrogen-containing atmospheres. Russ J Electrochem. 2016;52:1076–1081. doi:10.1134/S1023193516110069

Dunyushkina L, Khaliullina A, Meshcherskikh A, Pankratov A, Osinkin D. Effect of A-Site nonstoichiometry on defect chemistry and electrical conductivity of undoped and Y-doped SrZrO3. Mater. 2019;12:1258. doi:10.3390/ma12081258

Qian K, Pan Y, Hu Z, Chen X, Shi Y, Liu X, Chen H, Nikl M, Li J. Influence of co-doped alumina on the microstructure and radioluminescence of SrHfO3:Ce ceramics. J Eur Ceram Soc. 2020;40:449–455. doi:10.1016/j.jeurceramsoc.2019.09.034

Jarý V, Bohacek P, Pejchal J, Beitlerova A, Trunda B, Panek D, Bruza P, Kurosawa S, Yoshikawa A, Nikl M. Scintillating ceramics based on non-stoichiometric strontium hafnate. Opt Mater. 2018;77:246–252. doi:10.1016/j.optmat.2018.01.042

Kurosawa S, Pejchal J, Wakahara S, Yokota Y, Yoshikawa A. Optical properties and radiation response of Ce:SrHfO3 pre-pared by the spark plasma sintering method. Rad Measur. 2013;56:155–158. doi:10.1016/j.radmeas.2013.01.051

Khaliullina A, Meshcherskikh A, Pankratov A, Dunyushkina L. Effect of Sr deficiency on electrical conductivity of Yb-doped strontium zirconate. Mater. 2022;15: 4126. doi:10.3390/ma15124126

Yamanaka S, Maekawa T, Muta H, Matsuda T, Kobayashi S, Kurosaki K. Thermophysical properties of SrHfO3 and SrRuO3. J Solid State Chem. 2004;177(10):3484–3489. doi:10.1016/j.jssc.2004.05.039

Thomas JK, Padma Kumar H, Prasad VS, Solomon S. Struc-ture and properties of nanocrystalline BaHfO3 synthesized by an auto-igniting single step combustion technique. Ce-ram Int. 2011;37(2):567–571. doi:10.1016/j.ceramint.2010.10.005

Yang W, Han C, Li Y, Zhou H, Liu S, Wang L, He Z, Dai L. Influence of rare-earth doping on the phase composition, sinterability, chemical stability and conductivity of BaHf0.8Ln0.2O3–d (Ln=Yb, Y, Dy, Gd) proton conductors. Int J Hydrog Energy. 2021;46:35678–35691. doi:10.1016/j.ijhydene.2021.08.093

Ma W, Li P, Dong H, Bai Y, Zhao J, Fan X. Y2O3 and Yb2O3 co-doped strontium hafnate as a new thermal barrier coating material. J Therm Spray Technol. 2013;23(1):154–159. doi:10.1007/s11666-013-0006-9

Zvonareva IA, Kasyanova AV, Tarutin AP, Vdovin GK, Lya-gaeva JG, Medvedev DA. Enhanced transport properties of Sn-substituted proton-conducting BaZr0.8Sc0.2O3–δ ceramic materials. J Am Ceram Soc. 2021;105(3):2105–2115. doi:10.1111/jace.18224

Lukin ES, Soyuzova AY. The synthesis, sintering, and prop-erties of strontium hafnate. Refractories. 1973;14:174–180. doi:10.1007/BF01286429

Dunyushkina LA, Khaliullina ASh, Meshcherskikh AN, Pankratov AA. Sintering and conductivity of Sc-doped Ca-ZrO3 with Fe2O3 as a sintering aid. Ceram Int. 2021;47:10565–10573. doi:10.1016/j.ceramint.2020.12.168


Copyright (c) 2023 Adelya S. Khaliullina, Anastasia N. Meshcherskikh, Liliya A. Dunyushkina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2023
ISSN 2411-1414 (Online)
Copyright Notice