Effect of Sn doping on sinterability and electrical conductivity of strontium hafnate
Abstract
Keywords
Full Text:
PDFReferences
Hwang SC, Choi GM. The mixed ionic and electronic con-ductivity of CaZrO3 with cation nonstoichiometry and oxy-gen partial pressure. Solid State Ionics. 2008;179:1042–1045. doi:10.1016/j.ssi.2007.11.034
Wang C, Xu X, Yu H, Wen Y, Zhao K. A study of the solid electrolyte Y2O3 doped CaZrO3. Solid State Ionics. 1988;28–30:542–545. doi:10.1016/s0167-2738(88)80099-7
Yugami H, Naito H, Arashi H. Fabrication of SrMO3, (M = Ce and Zr) thin films and SrCeO3/SrZrO3, superlattices by laser ablation. Appl Surf Sci. 1997:113–114:222–226. doi:10.1016/S0169-4332(96)00899-9
Saini DS, Bhattacharya D. Electrical properties of BaZrO3 Ceramic synthesized by a flash pyrolisys process. AIP Conf Proceed. 2016;1724:020104-1–020104-8. doi:10.1063/1.4945224
Nomura K, Kageyama H. Transport properties of Ba(Zr0,8Y0,2)O3−δ perovskite. Solid State Ionics. 2007;178:661–665. doi:10.1016/j.ssi.2007.02.010
Weng Z, Huang H, Li X, Zhang Y, Shao R, Yi Y, Lu Y, Zeng X, Zou J, Chen L, Li W, Meng Y, Asefa T, Huang C. Coordina-tion Tailoring of epitaxial perovskite-derived iron oxide films for efficient water oxidation electrocatalysis. ACS Catalysis. 2023;13(4):2751–2760. doi:10.1021/acscatal.2c05147
Farooq N, Luque R, Len T, Osman SM, Qureshi AM, Nazir MA, ur Rehman A. Design of SrZr0.1Mn0.4Mo0.4Y0.1O3–δ hetero-structured with ZnO as electrolyte material: structural, op-tical and electrochemical behavior at low temperatures. Ceram Int. 2023;49(2):2174–2182. doi:10.1016/j.ceramint.2022.09.184
Iwahara H, Esaka T, Uchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics. 1981;3–4:359–363. doi:10.1016/0167-2738(81)90113-2
Iwahara H, Uchida H, Tanaka S. High temperature type proton conductor based on SrCeO3 and its application to sol-id electrolyte fuel cells. Solid State Ionics. 1983;9–10:1021–1025. doi:10.1016/0167-2738(83)90125-X
Iwahara H, Uchida H, Maeda N. High temperature fuel and steam electrolysis cells using proton conductive solid elec-trolytes. J Power Sources. 1982;7(3):293–301. doi:10.1016/0378-7753(82)80018-9
Takahashi T, Iwahara H. Solid state ionics: proton conduc-tion in perovskite type solid solutions. Rev Chim Miner. 1980;17(4):243–253. doi:10.1002/chin.198114014
Sammes N, Phillips R, Smirnova A. Proton conductivity in stoichiometric and sub-stoichiometric yittrium doped SrCeO3 ceramic electrolytes. J Power Sources. 2004;134(2):153–159. doi:10.1016/j.jpowsour.2004.02.036
LÜ J, Wang L, Fan L, Li Y, Dai L, Guo H. Chemical stability of doped BaCeO3–BaZrO3 solid solutions in different atmos-pheres. J Rare Earths. 2008;26:505–510. doi:10.1016/S1002-0721(08)60127-1
Choi SM, Lee JH, Choi MB, Hong J, Yoon KJ, Kim BK, Lee HW, Lee JH. Determination of electronic and ionic partial conductivities of BaCeO3 with Yb and In doping. J Electro-chem Soc. 2015;162(7):F789–F795. doi:10.1149/2.0011508jes
Shrivastava UN, Duncan KL, Chung JN. Experimentally validated numerical modeling of Eu doped SrCeO3 mem-brane for hydrogen separation. Int J Hydrog Energy. 2012;37(20):15350–15358. doi:10.1016/j.ijhydene.2012.07.061
Zhang C, Zhao H, Zhai S. Electrical conduction behavior of proton conductor BaCe1–xSmxO3–δ in the intermediate temperature range. Int J Hydrogen Energy. 2011;36(5):3649–3657. doi:10.1016/j.ijhydene.2010.12.087
Janke D. Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts. Metall Trans B. 1982;13B:227–235. doi:10.1007/BF02664579
Bhide SV, Virkar AV. Stability of AB’1/2B’1/2O3-type mixed Perovskite proton conductors. J Electrochem Soc. 1999;146(12):4386–4392. doi:10.1149/1.1392648
Kato K, Han D, Uda T. Transport properties of proton con-ductive Y-doped BaHfO3 and Ca or Sr-substituted Y-doped BaZrO3. J Am Ceram Soc. 2019;102(3):1201–1210. doi:10.1111/jace.15946
Sun W, Zhu Z, Shi Z, Liu W. Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3–δ for solid oxide fuel cells. J Power Sources. 2013;229:95–101. doi:10.1016/j.jpowsour.2012.12.017
Snijkers FMM, Buekenhoudt A, Luyten JJ, Cooymans J, Mertens M. Proton conductivity in perovskite type yttrium doped barium hafnate. Scr Mater. 2004;51:1129–1134. doi:10.1016/j.scriptamat.2004.08.021
Yang W, Wang L, Li Y, Zhou H, He Z, Han C, Dai L. An easily sintered, chemically stable indium and tin co-doped barium hafnate electrolyte for hydrogen separation. J Alloys Compd. 2021;868:159117. doi:10.1016/j.jallcom.2021.159117
Bevillon E, Hermet J, Dezanneau G, Geneste G. How dopant size influences the protonic energy landscape in BaSn1–xMxO3–x/2 (M = Ga, Sc, In, Y, Gd, La), J. Mater Chem A. 2014;2(2):460–471. doi:10.1039/c3ta12870a
Loken A, Kjolseth C, Haugsrud R. Electrical conductivity and TG-DSC study of hydration of Sc-doped CaSnO3 and Ca-ZrO3. Solid State Ionics. 2014;267:61–67. doi:10.1016/j.ssi.2014.09.006
Gorelov VP, Balakireva VB, Kuz’min AV. Ion conductivity of perovskites CaZr1–xScxO3–a (x=0.03–0.20) in hydrogen-containing atmospheres. Russ J Electrochem. 2016;52:1076–1081. doi:10.1134/S1023193516110069
Dunyushkina L, Khaliullina A, Meshcherskikh A, Pankratov A, Osinkin D. Effect of A-Site nonstoichiometry on defect chemistry and electrical conductivity of undoped and Y-doped SrZrO3. Mater. 2019;12:1258. doi:10.3390/ma12081258
Qian K, Pan Y, Hu Z, Chen X, Shi Y, Liu X, Chen H, Nikl M, Li J. Influence of co-doped alumina on the microstructure and radioluminescence of SrHfO3:Ce ceramics. J Eur Ceram Soc. 2020;40:449–455. doi:10.1016/j.jeurceramsoc.2019.09.034
Jarý V, Bohacek P, Pejchal J, Beitlerova A, Trunda B, Panek D, Bruza P, Kurosawa S, Yoshikawa A, Nikl M. Scintillating ceramics based on non-stoichiometric strontium hafnate. Opt Mater. 2018;77:246–252. doi:10.1016/j.optmat.2018.01.042
Kurosawa S, Pejchal J, Wakahara S, Yokota Y, Yoshikawa A. Optical properties and radiation response of Ce:SrHfO3 pre-pared by the spark plasma sintering method. Rad Measur. 2013;56:155–158. doi:10.1016/j.radmeas.2013.01.051
Khaliullina A, Meshcherskikh A, Pankratov A, Dunyushkina L. Effect of Sr deficiency on electrical conductivity of Yb-doped strontium zirconate. Mater. 2022;15: 4126. doi:10.3390/ma15124126
Yamanaka S, Maekawa T, Muta H, Matsuda T, Kobayashi S, Kurosaki K. Thermophysical properties of SrHfO3 and SrRuO3. J Solid State Chem. 2004;177(10):3484–3489. doi:10.1016/j.jssc.2004.05.039
Thomas JK, Padma Kumar H, Prasad VS, Solomon S. Struc-ture and properties of nanocrystalline BaHfO3 synthesized by an auto-igniting single step combustion technique. Ce-ram Int. 2011;37(2):567–571. doi:10.1016/j.ceramint.2010.10.005
Yang W, Han C, Li Y, Zhou H, Liu S, Wang L, He Z, Dai L. Influence of rare-earth doping on the phase composition, sinterability, chemical stability and conductivity of BaHf0.8Ln0.2O3–d (Ln=Yb, Y, Dy, Gd) proton conductors. Int J Hydrog Energy. 2021;46:35678–35691. doi:10.1016/j.ijhydene.2021.08.093
Ma W, Li P, Dong H, Bai Y, Zhao J, Fan X. Y2O3 and Yb2O3 co-doped strontium hafnate as a new thermal barrier coating material. J Therm Spray Technol. 2013;23(1):154–159. doi:10.1007/s11666-013-0006-9
Zvonareva IA, Kasyanova AV, Tarutin AP, Vdovin GK, Lya-gaeva JG, Medvedev DA. Enhanced transport properties of Sn-substituted proton-conducting BaZr0.8Sc0.2O3–δ ceramic materials. J Am Ceram Soc. 2021;105(3):2105–2115. doi:10.1111/jace.18224
Lukin ES, Soyuzova AY. The synthesis, sintering, and prop-erties of strontium hafnate. Refractories. 1973;14:174–180. doi:10.1007/BF01286429
Dunyushkina LA, Khaliullina ASh, Meshcherskikh AN, Pankratov AA. Sintering and conductivity of Sc-doped Ca-ZrO3 with Fe2O3 as a sintering aid. Ceram Int. 2021;47:10565–10573. doi:10.1016/j.ceramint.2020.12.168
DOI: https://doi.org/10.15826/chimtech.2023.10.1.13
Copyright (c) 2023 Adelya S. Khaliullina, Anastasia N. Meshcherskikh, Liliya A. Dunyushkina
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice