Cover Image

A DFT-D4 investigation of the complexation phenomenon between pentachlorophenol and β-cyclodextrin

Zoubir Kabouche, Youghourta Belhocine, Tahar Benlecheb, Ibtissem Meriem Assaba, Abdelkarim Litim, Rabab Lalalou, Asma Mechhoud

Abstract


Density functional theory (DFT) calculations based on the BLYP-D4 and PBEh-3c composite methods were performed for investigating the encapsulation mode of pentachlorophenol (PCP) inside the cavity of β-cyclodextrin (β-CD). Different quantum chemical parameters such as HOMO, LUMO, and HOMO–LUMO gap were calculated. Complexation energies were computed at the molecular level to provide insight into the inclusion of PCP inside the β-CD cavity. The Independent gradient model (IGM) approach was applied to characterize the non-covalent interactions that occurred during the complex (PCP@β-CD) formation. Two modes of inclusion were considered in this work (modes A and B). Calculated complexation energies as well as the changes in enthalpy, entropy, and free Gibbs energy exhibit negative values for both modes A and B, indicating a thermodynamically favorable process. Weak Van der Waals interactions and one strong intermolecular hydrogen bond act as the main driving forces behind the stabilization of the formed most stable complex. This study was carried out to explore the potential use of the β-CD as a host macrocycle for sensing and capturing pentachlorophenol.

Keywords


β-cyclodextrin; pentachlorophenol; inclusion complex; non-covalent interactions; environmental pollution

Full Text:

PDF

References


Mattia E, Otto S. Supramolecular systems chemistry. Nat Nanotechnol. 2015;10:111–119. doi:10.1038/nnano.2014.337

Kolesnichenko IV, Anslyn EV. Practical applications of supramolecular chemistry. Chem Soc Rev. 2017;46:2385–2390. doi:10.1039/C7CS00078B

Ma X, Zhao Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem Rev. 2014;115:7794–7839. doi:10.1021/cr500392w

Sambrook MR, Notman S. Supramolecular chemistry and chemical warfare agents: From fundamentals of recognition to catalysis and sensing. Chem Soc Rev. 2013;42:9251–9267. doi:10.1039/C3CS60230C

Bohmer V. Calixarenes, Macrocycles with (Almost) Unlimited Possibilities. Angew Chem Int Ed Engl. 1995;34:713–725. doi:10.1002/anie.199507131

Chen JF, Ding JD, Wei TB. Pillararenes: Fascinating planar chiral macrocyclic arenes. Chem Commun. 2021;57:9029–9039. doi:10.1039/D1CC03778A

Gerasko OA, Samsonenko DG, Fedin VP. Supramolecular chemistry of cucurbiturils. Russ Chem Rev. 2002;71:741–760. doi:10.1070/RC2002v071n09ABEH000748

Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114:10940–10975. doi:10.1021/cr500081p

Del Valle EM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033-1046. doi:10.1016/S0032-9592(03)00258-9

Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Cyclodextrins from molecules to applications. Environ Chem Lett. 2018;16:1361–1375. doi:10.1007/s10311-018-0763-2

Gidwani B, Vyas A. Pharmacokinetic study of solid-lipid-nanoparticles of altretamine complexed epichlorohydrin-β-cyclodextrin for enhanced solubility and oral bioavailability. Int J Biol Macromol. 2017;101:24–31. doi:10.1016/j.ijbiomac.2017.03.047

Alizadeh N, Malakzadeh S. Changes in chemical stability and bioactivities of curcumin by forming inclusion complexes of beta- and Gama-cyclodextrins. J Polym Res. 2020;27:42. doi:10.1007/s10965-019-1994-z

Yadav M, Thakore S, Jadeja R. A review on remediation technologies using functionalized Cyclodextrin. Environ Sci Pollut Res. 2022;29:236–250. doi:10.1007/s11356-021-15887-y

Roy I, Stoddart JF. Cyclodextrin metal–organic frameworks and their applications. Acc Chem Res. 2021;54(6):1440–1453. doi:10.1021/acs.accounts.0c00695

Liu Y, Lin T, Cheng C, Wang Q, Lin S, Liu C, Han X. Research progress on synthesis and application of cyclodextrin polymers. Molec. 2021;26(4):1090. doi:10.3390/molecules26041090

Bautista‐Renedo JM, Hernández‐Esparza R, Cuevas‐Yañez E, Reyes‐Pérez H, Vargas R, Garza J, González‐Rivas N. Deformations of cyclodextrins and their influence to form inclusion compounds. Int J Quantum Chem. 2021;122(6):e26859. doi:10.1002/qua.26859

Tian B, Hua S, Tian Y, Liu J. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. Environ Sci Pollut Res. 2021;28:1317–1340. doi:10.1007/s11356-020-11168-2

Majd M, Yazdanpanah M, Bayatloo MR, Nojavan S. Recent advances and applications of cyclodextrins in magnetic solid phase extraction. Talanta. 2021;229:122296. doi:10.1016/j.talanta.2021.122296

Nelumdeniya NRM, Ranatunga RJKU. Complex forming behaviour of α, β and γ-cyclodextrins with varying size probe particles in silico. Ceylon J Sci. 2021;50(5):329–339. doi:10.4038/cjs.v50i5.7922

United States Environmental Protection Agency. Pentachlorophenol. Available from: https://www.epa.gov/ingredients-used-pesticide-products/pentachlorophenol, Accessed on 03 August 2022.

United States Environmental Protection Agency. Priority Pollutant List, 2014. Available from: https://www.epa.gov/sites/default/files/2015-09/documents/priority-pollutant-list-epa.pdf, Accessed on 03 August 2022.

Agency for Toxic Substances and Disease Registry (ATSDR), 2001. Toxicological Profile for Pentachlorophenol Atlanta, GA: U.S. Available from: https://semspub.epa.gov/work/10/100006534.pdf, Accessed on 03 August 2022.

Kraševec I, Nemeček N, Lozar Štamcar M, Kralj Cigić I, Prosen H. Non-destructive detection of pentachlorophenol residues in historical wooden objects. Polymers. 2021;13(7):1052. doi:10.3390/polym13071052

Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today. 2016;21:356–362. doi:10.1016/j.drudis.2015.11.017

Iacovino R, Rapuano F, Caso JV, Russo A, Lavorgna M, Russo C, Isidori M, Russo L, Malgieri G, Isernia C. β-Cyclodextrin inclusion complex to improve physicochemical properties of pipemidic acid: Characterization and bioactivity evaluation. Int J Mol Sci. 2013;14:13022–13041. doi:10.3390/ijms140713022

Bakó I, Jicsinszky L. Semiempirical calculations on cyclodextrins. J Incl Phenom Macrocycl Chem. 1994;18:275–289. doi:10.1007/BF00708734

Bouhadiba A, Belhocine Y, Rahim M, Djilani I, Nouar L, Khatmi DE. Host-guest interaction between tyrosine and β-cyclodextrin: Molecular modeling and nuclear studies. J Mol Liq. 2017;233:358–363. doi:10.1016/j.molliq.2017.03.029

Fifere A, Marangoci N, Maier SS, Coroaba A, Maftei D, Pinteala M. Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole. Beilstein J Org Chem. 2012;8:2191–2201. doi:10.3762/bjoc.8.247

Mazurek AH, Szeleszczuk Ł. Current status of quantum chemical studies of cyclodextrin host–guest Complexes. Molecules 2022;27:3874. doi:10.3390/molecules27123874

Mesri N, Belhocine Y, Messikh N, Sayede A, Mouffok B. Molecular DFT investigation on the inclusion complexation of Benzo[a]pyrene with γ-Cyclodextrin. Macroheterocycles 2021;14(2):164–170. doi:10.6060/mhc210337m

Oqmhula K, Hongo K, Maezono R, Ichibha T. Ab Initio evaluation of complexation energies for cyclodextrin-drug inclusion complexes. ACS Omega 2020;5:19371–19376. doi:10.1021/acsomega.0c01059

Hanna K, de Brauer C, Germain P. Cyclodextrin-enhanced solubilization of pentachlorophenol in water. J Environ Manag. 2004;71(1):1–8. doi:10.1016/j.jenvman.2004.01.001

Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput Mol Sci. 2012;2:73–78. doi:10.1002/wcms.81

Neese F. Software update: the ORCA program system, version 4.0. WIREs. Comput Mol Sci. 2017;8:e1327. doi:10.1002/wcms.1327

Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–3100. doi:10.1103/PhysRevA.38.3098

Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789. doi:10.1103/PhysRevB.37.785

Caldeweyher E, Ehlert S, Hansen A, Neugebauer H, Spicher S, Bannwarth C, Grimme S. A generally applicable atomic-charge dependent London dispersion correction. J Chem Phys. 2019;150:154122. doi:10.1063/1.5090222

Belhocine Y, Rahali S, Allal H, Assaba IM, Ghoniem MG, Ali FAM. A dispersion corrected DFT investigation of the inclusion complexation of dexamethasone with β-Cyclodextrin and molecular docking study of its potential activity against COVID-19. Molec. 2021;26:7622. doi:10.3390/molecules26247622

Litim A, Belhocine Y, Benlecheb T, Ghoniem MG, Kabouche Z, Ali FAM, Abdulkhair BY, Seydou M, Rahali S. DFT-D4 Insight into the Inclusion of Amphetamine and Methamphetamine in Cucurbit[7]uril: Energetic, Structural and Biosensing Properties. Molec. 2021;26:7479. doi:10.3390/molecules26247479

Kruse H, Grimme S. A geometrical correction for the inter-and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J Chem Phys. 2012;136:154101. doi:10.1063/1.3700154

Liu L, Guo QX. Use of quantum chemical methods to study cyclodextrin chemistry. J Incl Phenom Macrocycl Chem. 2004;50:95–103. doi:10.1007/s10847-003-8847-3

Jmol: an open-source Java viewer for chemical structures in 3D. Available from: http://www.jmol.org/

Grimme S, Brandenburg JG, Bannwarth C, Hansen A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J Chem Phys. 2015;143:054107. doi:10.1063/1.4927476

Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J Phys Chem B 2009;113(18):6378–6396. doi:10.1021/jp810292n

Lefebvre C, Khartabil H, Boisson JC, Contreras-García J, Piquemal JP, Hénon E. The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations. ChemPhysChem 2018;19:724–735. doi:10.1002/cphc.201701325

Lu T, Chen Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J Comput Chem. 2022;43:539–555. doi:10.1002/jcc.26812

Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592. doi:10.1002/jcc.22885

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38. doi:10.1016/0263-7855(96)00018-5

Knizia G. Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts. J Chem Theory Comput. 2013;9(11):4834–4843. doi:10.1021/ct400687b

Knizia G, Klein JE. Electron flow in reaction mechanisms—Revealed from first principles. Angew Chem Int Ed. 2015;54(18):5518–5522. doi:10.1002/anie.201410637

González GB, Espinoza JM. Thermodynamic and reactivity aspect of β-cyclodextrine inclusion complexes with coumarin derivatives. J Chil Chem Soc. 2022;67(2):5514–5520. doi:10.4067/S0717-97072022000205514

Belhocine Y, Bouhadiba A, Rahim M, Nouar L, Djilani I, Khatmi DE. Inclusion complex formation of β-Cyclodextrin with the nonsteroidal anti-inflammatory drug flufenamic acid: computational study. Macroheterocycles. 2018;11(2):203–209. doi:10.6060/mhc170829b

Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1998;88:899–926. doi:10.1021/cr00088a005

Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account. 2008;120:215–241. doi:10.1007/s00214-007-0310-x

Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys. 2006;8:1057–1065. doi:10.1039/B515623H

Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297–3305. doi:10.1039/B508541A

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision D.01, Gaussian Inc., Wallingford (CT), 2013.




DOI: https://doi.org/10.15826/chimtech.2023.10.2.09

Copyright (c) 2023 Zoubir Kabouche, Youghourta Belhocine, Tahar Benlecheb, Ibtissem Meriem Assaba, Abdelkarim Litim, Rabab Lalalou, Asma Mechhoud

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice