Cover Image

(Mechano)synthesis of azomethine- and terpyridine-linked diketopyrrolopyrrole-based polymers

Wahab K. A. Al-Ithawi, Albert F. Khasanov, Maria I. Valieva, Artem V. Baklykov, Konstantin A. Chistiakov, Evgeny D. Ladin, Igor S. Kovalev, Igor L. Nikonov, Grigory A. Kim, Vadim A. Platonov, Dmitry S. Kopchuk, Zhuo Wang, Grigory V. Zyryanov

Abstract


Three efficient synthetic approaches towards new azomethine- and terpyridine-containing 2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (diketopyrrolopyrrole, DPP) based polymers, such as P1 and P2, are reported. The first approach involves the Pd-catalyzed synthesis via two- or three-component Suzuki or Stille cross-coupling reaction in solution. The second approach involves Pd-catalyzed Suzuki cross-coupling reaction under ball-milling conditions. And, finally, the third approach involves Pd-free condensation reaction under ball-milling conditions. The newly obtained polymers exhibited absorbance around 700 nm and emission around 900 nm, and, thus, these polymers are considered to be NIR-fluorophores.

Keywords


diketopyrrolopyrrole-based polymers; Pd-catalyzed synthesis; mechanosynthesis; NIR emission

Full Text:

PDF

References


Grzybowski M, Gryko DT. Diketopyrrolopyrroles: synthesis, reactivity, and optical properties. Adv Optical Mater. 2015;3(3):280–320. doi:10.1002/adom.201400559

Kaur M, Choi DH. Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications. Chem Soc Rev. 2015;44(1):58–77. doi:10.1039/c4cs00248b

Liu Z, Sun J, Yan C, Xie Z, Zhang G, Shao X, Zhang D, Zhou S. Diketopyrrolopyrrole based donor–acceptor π-conjugated copolymers with near-infrared absorption for 532 and 1064 nm nonlinear optical materials. J Mater Chem C. 2020;8(37):12993–13000. doi:10.1039/D0TC02901G

Li W, Wang L, Tang H, Cao D. Diketopyrrolopyrrole-based fluorescent probes for detection and bioimaging: current progresses and perspectives. Dyes Pigm. 2019;162:934–950. doi:10.1016/j.dyepig.2018.11.023

Tieke B, Rabindranath AR, Zhang K, Zhu Y. Conjugated polymers containing diketopyrrolopyrrole units in the main chain. Beilstein J Org Chem. 2010;6:830–845. doi:10.3762/bjoc.6.92

Bao WW, Li R, Dai ZC, Tang J, Shi X, Geng JT, Deng ZF, Hua J. Diketopyrrolopyrrole (DPP)-Based Materials and Its Applications: A Review. Front Chem. 2020;8:679. doi:10.3389/fchem.2020.00679

Shaikh SAL, Birajdar SS, Ambore SD, Puyad AL, Vijayanand P, Bhosale SV, Bhosale SV. A mini-review on diketopyrrolopyrrole chemistry: Historical perspective and recent developments. Res Chem. 2022;4:100473. doi:10.1016/j.rechem.2022.100473

Rabindranath AR, Zhu Y, Zhang K, Tieke B. Purple red and luminescent polyiminoarylenes containing the 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) chromophore. Polymer. 2009;50(7):1637–1644. doi:10.1016/j.polymer.2009.02.012

Bürgi L, Turbiez M, Pfeiffer R, Bienewald F, Kirner H-J, Winnewisser C. High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv Mater. 2008;20(11):2217–2224. doi:10.1002/adma.200702775

Barrère C, Hubert-Roux M, Lange CM, Rejaibi M, Kebir N, Désilles N, Lecamp L, Burel F, Loutelier-Bourhis C. Solvent-based and solvent-free characterization of low solubility and low molecular weight polyamides by mass spectrometry: a complementary approach. Rapid Commun Mass Spectr. 2012;26(11):1347–1354. doi:10.1002/rcm.6231

Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28(8):1223–1270. doi:10.1016/S0079-6700(03)00045-5

Ohnishi I, Hashimoto K, Tajima K. Synthesis of diketopyrrolopyrrole-based polymers with polydimethylsiloxane side chains and their application in organic field-effect transistors. R Soc Open Sci. 2018;5(3):172025. doi:10.1098/rsos.172025

Krusenbaum A, Grätz S, Tigineh GT, Borchardt L, Kim JG. The mechanochemical synthesis of polymers. Chem Soc Rev. 2022;51(7):2873–2905. doi:10.1039/D1CS01093J

Kozhevnikov VN, Kozhevnikov DN, Shabunina OV, Rusinov VL, Chupakhin ON. An efficient route to 5,5′′-diaryl-2,2′:6′,2′′-terpyridines through 2,6-bis(1,2,4-triazin-3-yl)pyridines. Tetrahedron Lett. 2005; 46(9):1521–1523. doi:10.1016/j.tetlet.2005.01.020

Nikoshvili L, Bakhvalova ES, Bykov AV, Sidorov AI, Vasiliev AL, Matveeva VG, Sulman MG, Sapunov VN, Kiwi-Minsker L. Study of deactivation in suzuki reaction of polymer-stabilized Pd nanocatalysts. Processes. 2020;8(12):1653. doi:10.3390/pr8121653

Kosco J, McCulloch I. Residual pd enables photocatalytic H2 evolution from conjugated polymers. ACS Energy Lett. 2018;3(11):2846–2850. doi:10.1021/acsenergylett.8b01853




DOI: https://doi.org/10.15826/chimtech.2023.10.2.04

Copyright (c) 2023 Wahab K. A. Al-Ithawi, Albert F. Khasanov, Maria I. Valieva, Artem V. Baklykov, Konstantin A. Chistiakov, Evgeny D. Ladin, Igor S. Kovalev, Igor L. Nikonov, Grigory A. Kim, Vadim A. Platonov, Dmitry S. Kopchuk, Zhuo Wang, Grigory V. Zyryanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International