Cover Image

Testing conditions for CoMo HDS catalyst in the kinetic region: integrated approach using the math calculations and catalytic experiments

Polina P. Mukhacheva, Yuliya V. Vatutina, Ivan A. Mik, Ksenia A. Nadeina, Maxim O. Kazakov, Oleg P. Klenov, Oleg V. Klimov, Aleksandr S. Noskov


The main idea of the investigation was to define testing parameters with the lowest influence of internal and external diffusion on catalytic activity in hydrodesulfurization of dibenzothiophene. Traditional experimental methods were used to determine the conditions for the influence of internal and external diffusion. Simultaneous change of a linear feedstock rate and a catalyst loading at constant weight hour space velocity were used to determine the process temperature (240–260 °C) at which the impact of external diffusion is minimal. Catalytic tests, including the variation of the catalyst fraction size, were carried out to define the conditions with the lowest influence of internal diffusion. It was found that when the catalyst with the fraction size of 0.1–0.25 mm was used, the fluctuation of sulfur conversion was the smallest. Besides, to validate experimental results, the calculations were performed with mass balance equations and expressions used for HDS modeling. The resulting data and catalytic experiments demonstrated that the lowest influence of internal and external diffusion is achieved at a temperature process less than 260 °C and a catalyst fraction of 0.1–0.25 mm.


diffusion limitation; kinetic region; hydrodesulfurization; dibenzothiophene; CoMo HDS catalysts

Full Text:



Wang TE, Yang F, Song M, Han D. Recent advances in the unsupported catalysts for the hydrodesulfurization of fuel. Fuel Proc Technol.2022:235. doi:10.1016/j.fuproc.2022.107386

Ancheyta J. Modeling and simulation of catalytic reactors for petroleum refining. Model Simul Catal Reac Petroleum Refining. 2011. doi:10.1002/9780470933565.fmatter

Kaluža L, Gulková D, Šolcová O, Žilková N, Čejka J. Hy-drotreating catalysts supported on organized mesoporous alumina: Optimization of Mo deposition and promotional effects of Co and Ni. Appl Catal A Gen. 2008;351(1):93–101. doi:10.1016/j.apcata.2008.09.002

Huirache-Acuña R, Navarro Yerga RM, Pawelec B. Hy-drodesulfurization on Supported CoMoS2 Catalysts Ex Am-monium Tetrathiomolybdate: Effects of Support Morpholo-gy and Al Modification Method. Top Catal. 2022;65:1394–1407. doi:10.1007/s11244-022-01647-w

Iqrash Shafiq, Sumeer Shafique, Parveen Akhter, et al. Re-cent developments in alumina supported hydrodesulfuriza-tion catalysts for the production of sulfur-free refinery products: A technical review. Catal Rev. 2020;64:1–86. doi:10.1080/01614940.2020.1780824

Klimov OV, Vatutina YV, Nadeina KA. CoMoB/Al2O3 cata-lysts for hydrotreating of diesel fuel. The effect of the way of the boron addition to a support or an impregnating solu-tion. Catal Today. 2018;305:192–202. doi:10.1016/j.cattod.2017.07.004

Zhang C, Zhang Y, Zheng H. Improving both the activity and selectivity of CoMo/δ-Al2O3 by phosphorous modification for the hydrodesulfurization of fluid catalytic cracking naphtha. Energy Fuels. 2022;36(7):3825–3834. doi:10.1021/acs.energyfuels.1c04164

Chen Z, Liu Y, Chen J, Zhao Y, et al. Synthesis of alumina-nitrogen-doped carbon support for CoMo catalysts in hy-drodesulfurization process. Chin J Chem Engin. 2022;41:392–402. doi:10.1016/j.cjche.2021.09.015

Catita L, Quoineaud AA, Moreaud M, Espinat D, Pichon C, Delpoux O. Impact of citric acid on the impregnation of CoMoP/γ-Al2O3 catalysts: time and spatially resolved MRI and Raman imaging study. Top Catal. 2018;61(14):1474–1484. doi:10.1007/s11244-018-1038-7

Sun J, Mu C, Li Y, Zhao Y, Wang S, Ma X. The hydrotreat-ment of n-C16 over Pt/HPMo/SBA-15 and the investigation of diffusion effect using a novel W-P criterion. AIChE J. 2021;67(9):e17330. doi:10.1002/aic.17330

Chen A Cheng, Chen SL, Hua D run, et al. Diffusion of heavy oil in well-defined and uniform pore-structure cata-lyst under hydrodemetallization reaction conditions. Chem Eng J. 2013;231:420–426. doi:10.1016/j.cej.2013.07.035

Perego C, Peratello S. Experimental methods in catalytic kinetics. Catal Today. 1999;52(2–3):133–145. doi:10.1016/S0920-5861(99)00071-1

Dautzenberg FM. Ten guidelines for catalyst testing. ACS Symposium Ser. 1989:99–119. doi:10.1021/bk-1989-0411.ch011

Chen J, Yang H, Ring Z. Study of intra-particle diffusion effect on hydrodesulphurization of dibenzothiophenic com-pounds. Catal Today. 2005;109(1):93–98. doi:10.1016/j.cattod.2005.08.006

PA Ramachandran RC. Three-phase catalytic reactors. Gor-don Breach Sci Pub. 1983.

Marroquín G, Ancheyta J, Esteban C. A batch reactor study to determine effectiveness factors of commercial HDS cata-lyst. Catal Today. 2005;104(1):70–75. doi:10.1016/J.CATTOD.2005.03.026

Chen J, Mulgundmath V, Wang N. Accounting for vapor-liquid equilibrium in the modeling and simulation of a commercial hydrotreating reactor. Ind Eng Chem Res. 2011;50(3):1571–1579. doi:10.1021/ie101550g

Bhaskar M, Valavarasu G, Sairam B, Balaraman KS, Balu K. Three-phase reactor model to simulate the performance of pilot-plant and industrial trickle-bed reactors sustaining hydrotreating reactions. Ind Eng Chem Res. 2004;43(21):6654–6669. doi:10.1021/ie049642b

Palos R, Gutiérrez A, Hita I, et al. Kinetic modeling of hy-drotreating for enhanced upgrading of light cycle oil. Ind Eng Chem Res. 2019;58(29):13064–13075. doi:10.1021/acs.iecr.9b02095

Alvarez-Majmutov A, Chen J. Modeling and simulation of a multibed industrial hydrotreater with vapor-liquid equilib-rium. Ind Eng Chem Res. 2014;53(26):10566–10575. doi:10.1021/ie501032j

Mijatović IM, Glisic SB, Orlović AM. Modeling a catalytic reactor for hydrotreating of straight-run gas oil blended with fluid catalytic cracking naphtha and light cycle oil: in-fluence of vapor–liquid equilibrium. Ind Eng Chem Res. 2014;53(49):19104–19116. doi:10.1021/ie503188p

Jarullah AT, Mujtaba IM, Wood AS. Kinetic model develop-ment and simulation of simultaneous hydrodenitrogena-tion and hydrodemetallization of crude oil in trickle bed reactor. Fuel. 2011;90(6):2165–2181. doi:10.1016/j.fuel.2011.01.025

Macías MJ, Ancheyta J. Simulation of an isothermal hy-drodesulfurization small reactor with different catalyst particle shapes. Catal Today. 2004;98(1):243–252. doi:10.1016/j.cattod.2004.07.038

Mederos FS, Ancheyta J, Elizalde I. Dynamic modeling and simulation of hydrotreating of gas oil obtained from heavy crude oil. Appl Catal A Gen. 2012;425–426:13–27. doi:10.1016/j.apcata.2012.02.034

da Rocha Novaes L, de Resende NS, Salim VMM, Secchi AR. Modeling, simulation and kinetic parameter estimation for diesel hydrotreating. Fuel. 2017;209:184–193. doi:10.1016/j.fuel.2017.07.092

Korsten H, Hoffmann U. Three-phase reactor model for hydrotreating in pilot trickle-bed reactors. AIChE J. 1996;42(5):1350–1360. doi:10.1002/aic.690420515

Shokri S, Zarrinpashne S. A mathematical model for calcu-lation of effectiveness factor in catalyst pellets of hy-drotreating process. Pet Coal. 2006;48(1):27–33.

Nadeina KA, Danilevich VV, Kazakov MO. Silicon doping effect on the properties of the hydrotreating catalysts of FCC feedstock pretreatment. Appl Catal B Environ. 2021;280:119415. doi:10.1016/j.apcatb.2020.119415

Vatutina YV, Kazakov MO, Nadeina KA. Is it possible to reac-tivate hydrotreating catalyst poisoned by silicon? Catal To-day. 2021;378:43–56. doi:10.1016/j.cattod.2021.03.005

Fogler SH. Essentials of chemical reaction engineering: essenti chemica reactio engi. Pearson Education; 2010.

Mederos FS, Ancheyta J, Chen J. Review on criteria to en-sure ideal behaviors in trickle-bed reactors. Appl Catal A Gen. 2009;355(1):1–19. doi:10.1016/j.apcata.2008.11.018

Rodríguez MA, Ancheyta J. Modeling of hydrodesulfuriza-tion (HDS), hydrodenitrogenation (HDN), and the hydro-genation of aromatics (HDA) in a vacuum gas oil hy-drotreater. Energy Fuels. 2004;18(3):789–794. doi:10.1021/ef030172s

Felder R. Catalytic reactor design, by M. Orhan tarhan. McGraw‐Hill, 1983. В: Aiche J. 1984:372.

Mik IA, Klenov OP, Kazakov MO, Nadeina KA, Klimov O V, Noskov AS. Optimization of grading guard systems for trap-ping of particulates to prevent pressure drop buildup in gas oil hydrotreater. Fuel. 2021;285:119149. doi:10.1016/j.fuel.2020.119149

Ahmed T. Hydrocarbon Phase Behaviour . Gulf, Houston, TX. 1989:226.

Biardi G, Baldi G. Three-phase catalytic reactors. Catal To-day. 1999;52(2):223–234. doi:10.1016/S0920-5861(99)00077-2

Ancheyta J, Angeles MJ, Macías MJ, Marroquín G, Morales R. Changes in apparent reaction order and activation ener-gy in the hydrodesulfurization of real feedstocks. Energy Fuels. 2002;16(1):189–193. doi:10.1021/ef0101917

Ancheyta-Juárez J, Aguilar-Rodríguez E, Salazar-Sotelo D, Betancourt-Rivera G, Leiva-Nuncio M. Hydrotreating of straight run gas oil-light cycle oil blends. Appl Catal A Gen. 1999;180(1–2):195–205. doi:10.1016/S0926-860X(98)00351-2

Macías Hernández MJ, Morales RD, Ramírez-Lopez A. Simu-lation of the effectiveness factor for a tri-lobular catalyst on the hydrodesulfurization of diesel. 2009;7(1). doi:10.2202/1542-6580.1806

Duduković MP, Larachi F, Mills PL. Multiphase catalytic reactors: a perspective on current knowledge and future trends. Catal Rev. 2002;44(1):123–246. doi:10.1081/CR-120001460

Satterfield CN. Trickle-bed reactors. AlChE J. 1975;21(2):209–228.

Li C, Chen YW, Tsai MC. Highly restrictive diffusion under hydrotreating reactions of heavy residue oils. Ind Eng Chem Res. 1995;34(3):898–905. doi:10.1021/ie00042a024

Scamangas A, Papayannakos N, Marangozis J. Catalytic hy-drodesulfurization of a petroleum residue. Chem Eng Sci. 1982;37(12):1810–1812.

G. F. Froment, K.B. Bischoff J de W. Chemical reactor analy-sis and design. 1990.

Chang J, Liu J, Li D. Kinetics of resid hydrotreating reac-tions. Catal Today. 1998;43(3–4):233–239. doi:10.1016/S0920-5861(98)00152-7

Aris R. The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts: The theory of the steady state. Ox-ford Uni.; 1975.

Carberry JJ. Chemical and Catalytic Reaction Engineering. Courier Corporation; 2001.

Thommes M, Kaneko K, Neimark A V., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9–10):1051–1069. doi:10.1515/pac-2014-1117

Wang HW, Skeldon P, Thompson GE. XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surf Coatings Technol. 1997;91:200–207. doi:10.1016/S0257-8972(96)03186-6

Gandubert AD, Legens C, Guillaume D, Payen E. X-ray pho-toelectron spectroscopy surface quantification of sulfided CoMoP catalysts – relation between activity and promoted sites – Part I: influence of the Co/Mo Ratio. Surf Interface Anal. 2006;38:206–209. doi:10.1002/sia.2249

Vatutina Y V, Klimov O V, Stolyarova EA, et al. Influence of the phosphorus addition ways on properties of CoMo-catalysts of hydrotreating. Catal Today. 2019;329:13–23. doi:10.1016/j.cattod.2019.01.005

Pecoraro T.A., Chianelli R.R. Hydrodesulfurization catalysis by transition metal sulfides. J Catal. 1981;67:430. doi:10.1016/0021-9517(81)90303-1


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2023 Polina P. Mukhacheva, Yuliya V. Vatutina, Ivan A. Mik, Ksenia A. Nadeina, Maxim O. Kazakov, Oleg P. Klenov, Oleg V. Klimov, Aleksandr S. Noskov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2023
ISSN 2411-1414 (Online)
Copyright Notice