Cover Image

Improvement of protective oxide layers formed by high-frequency plasma electrolytic oxidation on Mg-RE alloy with LPSO-phase

Alisa O. Cheretaeva, Pavel A. Glukhov, Marat R. Shafeev, Alyona G. Denisova, Eugeny D. Borgardt, Anton V. Polunin, Alexander V. Katsman, Mikhail M. Krishtal

Abstract


Oxide layers on Mg97Y2Zn1 magnesium alloy with strengthening LPSO-phase were formed by plasma electrolytic oxidation (PEO) in bipolar mode with frequency variation of forming current pulses (50 and 500 Hz) and addition of sodium aluminate or sodium silicate to alkali phosphate fluoride electrolyte. Microstructure, chemical and phase composition, corrosion and mechanical properties of the oxide layers formed were investigated. With increasing current frequency for both electrolytes, an increase in homogeneity of the oxide layers structure and a decrease in their porosity and fracturing at constant thickness were recorded. The oxide layers formed at 500 Hz even with some decrease in hardness have better adhesive strength and 2 orders of magnitude higher short-term corrosion resistance values. PEO of Mg-alloy with LPSO-phase in the electrolyte with addition of sodium aluminate in combination with increased pulse frequency (500 Hz) allows forming the best-quality uniform oxide layer with high hardness, adhesive strength and corrosion resistance properties. The use of electrolyte with addition of sodium silicate reduced the adhesive strength by 1.5 times and brought down the long-term corrosion resistance of oxide layers by an order of magnitude, as compared with the electrolyte with sodium aluminate. The reason for a significant improvement in the complex of protective properties of the oxide layers with an increase in the current pulse frequency is supposed to be a decrease in the power and duration of individual microarc discharges with simultaneous increase in their number per unit oxidized area.

Keywords


plasma electrolytic oxidation; magnesium alloys; LPSO phase; electrolyte system; frequency dependence; corrosion resistance; microhardness; adhesive strength

Full Text:

PDF

References


Song J, She J, Chen D, Pan F. Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloy. 2020;8:1–41. doi:10.1016/j.jma.2020.02.003

Yang C, Cai H, Cui S, Huang J, Zhu J, Wu ZZ, Ma Z, Fu RKY, Sheng L, Tian X, Chu PK, Wu ZZ. A zinc-doped coating prepared on the magnesium alloy by plasma electrolytic oxidation for corrosion protection. Surf Coatings Technol. 2022;433:128148. doi:10.1016/j.surfcoat.2022.128148

Liu X, Liu L, Dong S, Chen X-B, Dong J. Towards dense corrosion-resistant plasma electrolytic oxidation coating on Mg-Gd-Y-Zr alloy by using ultra-high frequency pulse current. Surf Coatings Technol. 2022;447:128881. doi:10.1016/j.surfcoat.2022.128881

Wang SD, Xu DK, Han EH, Dong C. Stress corrosion cracking susceptibility of a high strength Mg–7%Gd–5%Y–1%Nd–0.5%Zr alloy. J Magnes Alloy. 2014;2:335–341. doi:10.1016/J.JMA.2014.11.004

Li CQ, Xu DK, Zeng ZR, Wang BJ, Sheng LY, Chen XB., Han EH. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys. Mater Des. 2017;121:430–441. doi:10.1016/j.matdes.2017.02.078

Wang SD, Xu DK, Wang BJ, Sheng LY, Qiao YX, Han EH, Dong C. Influence of phase dissolution and hydrogen absorption on the stress corrosion cracking behavior of Mg–7%Gd–5%Y–1%Nd–0.5%Zr alloy in 3.5 wt.% NaCl solution. Corros Sci. 2018;142:185–200. doi:10.1016/J.CORSCI.2018.07.019

Fattah-alhosseini A, Chaharmahali R, Babaei K, Nouri M, Keshavarz MK, Kaseem M. A review of effective strides in amelioration of the biocompatibility of PEO coatings on Mg alloys. J Magnes Alloy. 2022;10:2354–2383. doi:10.1016/j.jma.2022.09.002

Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications. Corros Sci. 2014;86:1–16. doi:10.1016/J.CORSCI.2014.04.047

Xu D, Han EH, Xu Y. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review. Prog Nat Sci Mater Int. 2016;26:117–128. doi:10.1016/J.PNSC.2016.03.006

Qian Y, Zhao Y, Dong X, Yu W, Feng J, Yu H. Microstructure, Mechanical Properties and Fire Resistance of High Strength Mg-Gd-Y-Zr Alloys. Metals. 2022;12(9):1456. doi:10.3390/MET12091456

Wu J, Wu L, Yao W, Chen Y, Chen Y, Yuan Y, Wang J, Atrens A, Pan F. Effect of electrolyte systems on plasma electrolytic oxidation coatings characteristics on LPSO Mg-Gd-Y-Zn alloy. Surf Coatings Technol. 2023;454:129192. doi:10.1016/J.SURFCOAT.2022.129192

Wang G, Mao P, Wang Z, Zhou L, Wang F, Liu Z. High strain rates deformation behavior of an as-extruded Mg–2.5Zn–4Y magnesium alloy containing LPSO phase at high temperatures. J Mater Res. Technol. 2022;21:40–53. doi:10.1016/J.JMRT.2022.08.131

Volkova EF, Antipov VV, Zavodov AV. A Study of the Fine Structure and Phase Composition of Magnesium Alloy VMD16 in Cast and Homogenized Conditions. Met Sci Heat Treat. 2019;61:143–148. doi:10.1007/S11041-019-00390-6

Dai J, Dong Q, Nie Y, Jia Y, Chu C, Zhang X. Insight into the role of Y addition in the microstructures, mechanical and corrosion properties of as-cast Mg-Gd-Y-Zn-Ca-Zr alloys. Mater Des. 2022;221:110980. doi:10.1016/J.MATDES.2022.110980

Dang C, Wang J, Wang J, Yu D, Zheng W, Xu C, Lu R. Effect of lamellar LPSO phase on mechanical properties and damping capacity in cast magnesium alloys. J Mater Res Technol. 2023;22:2589–2599. doi:10.1016/J.JMRT.2022.12.087

Wu L, Li Y, Cheng Y, Linghu F, Jiang F, Chen G, Teng J, Fu D, Zhang H. Microstructure evolution and corrosion resistance improvement of Mg–Gd–Y–Zn–Zr alloys via surface hydrogen treatment. Corros Sci. 2021;191:109746. doi:10.1016/J.CORSCI.2021.109746

Liu Y, Wen J, Li H, He J. Effects of extrusion parameters on the microstructure, corrosion resistance, and mechanical properties of biodegradable Mg–Zn–Gd–Y–Zr alloy. J Alloys Compd. 2022;891:161964. doi:10.1016/J.JALLCOM.2021.161964

Zhang W, Zhao MC, Wang Z, Tan L, Qi Y, Yin DF, et al. Enhanced initial biodegradation resistance of the biomedical Mg-Cu alloy by surface nanomodification. J Magnes Alloy. 2022. doi:10.1016/J.JMA.2021.12.013

Zhang J, Xu J, Cheng W, Chen C, Kang J. Corrosion Behavior of Mg-Zn-Y Alloy with Long-period Stacking Ordered Structures. J Mater Sci Technol. 2012;28:1157–1162. doi:10.1016/S1005-0302(12)60186-8

Mohedano M, Pérez P, Matykina E, Pillado B, Garcés G, Arrabal R. PEO coating with Ce-sealing for corrosion protection of LPSO Mg–Y–Zn alloy. Surf Coatings Technol. 2020;383:125253. doi:10.1016/j.surfcoat.2019.125253

Kaseem M, Fatimah S, Nashrah N, Ko YG. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Prog Mater Sci. 2020;117:100735. doi:10.1016/j.pmatsci.2020.100735

Polunin AV, Cheretaeva AO, Borgardt ED, Shafeev MR, Katsman AV, Krishtal MM. Influence of nanoparticle additions to the electrolyte on the structure, composition and corrosion resistance of oxide layers formed by PEO on cast Mg alloy. J Phys Conf Ser. 2020;1713:12036. doi:10.1088/1742-6596/1713/1/012036

Jangde A, Kumar S, Blawert C. Role of glycerine on formation & corrosion characteristic of PEO layer formed over Mg alloy in a high-concentrated mixed silicate-phosphate-based electrolyte. Surf Coatings Technol. 2022;450:128971. doi:10.1016/J.SURFCOAT.2022.128971

Yasui T, Hayashi K, Fukumoto M. Behaviors of Micro-Arcs, Bubbles, and Coating Growth during Plasma Electrolytic Oxidation of Titanium Alloy. Mater. 2023;16:360. doi:10.3390/MA16010360

Wu T, Blawert C, Lu X, Serdechnova M, Zheludkevich ML. Difference in formation of plasma electrolytic oxidation coatings on MgLi alloy in comparison with pure Mg. J Magnes Alloy. 2021;9:1725–1740. doi:10.1016/J.JMA.2021.03.017

Dehnavi V, Luan BL, Shoesmith DW, Liu XY, Rohani S. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surf Coatings Technol. 2013;226:100–107. doi:10.1016/j.surfcoat.2013.03.041

Kaseem M, Hussain T, Baek SH, Ko YG. Formation of stable coral reef-like structures via self-assembly of functionalized polyvinyl alcohol for superior corrosion performance of AZ31 Mg alloy. Mater Des. 2020;193. doi:10.1016/j.matdes.2020.108823

Fu W, Yang H, Li T, Sun J, Guo S, Fang D, et al. Enhancing corrosion resistance of ZK60 magnesium alloys via Ca microalloying: The impact of nanoscale precipitates. J Magnes Alloy. 2022. doi:10.1016/J.JMA.2022.06.011

Mohedano M, Lopez E, Mingo B, Moon S, Matykina E, Arrabal R. Energy consumption, wear and corrosion of PEO coatings on preanodized Al alloy: The influence of current and frequency. J Mater Res Technol. 2022;21:2061–2075. doi:10.1016/j.jmrt.2022.10.049

Lv GH, Chen H, Gu WC, Li L,Niu EW, Zhang XH, Yang SZ. Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology. J Mater Process Technol. 2008;208:9–13. doi:10.1016/J.JMATPROTEC.2007.12.125

Srinivasan PB, Liang J, Balajeee RG, Blawert C, Störmer M, Dietzel W. Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy. Appl Surf Sci. 2010;256:3928–3935. doi:10.1016/J.APSUSC.2010.01.052

Li J, Bian Y, Tu X, Li W, Song D. Influence of surface roughness of substrate on corrosion behavior of MAO coated ZM5 Mg alloy. J Electroanal Chem. 2022;910:116206. doi:10.1016/J.JELECHEM.2022.116206

Zhu M, Song Y, Dong K, Shan D, Han EH. Correlation between the transient variation in positive/negative pulse voltages and the growth of PEO coating on 7075 aluminum alloy. Electrochim Acta. 2022;411:140056. doi:10.1016/J.ELECTACTA.2022.140056

Zhang Z, Liu X, Wang Z, Le Q, Hu W, Bao L, et al. Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg–Y–Zn–Zr alloys. Mater Des. 2015;88:915–923. doi:10.1016/J.MATDES.2015.09.087

Hakimizad A, Raeissi K, Santamaria M, Asghari M. Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in Na2WO4 containing solution: From unipolar to soft-sparking regime. Electrochim Acta. 2018;284:618–629. doi:10.1016/j.electacta.2018.07.200

Kaseem M, Kamil MP, Ko YG. Electrochemical response of MoO2-Al2O3 oxide films via plasma electrolytic oxidation. Surf Coatings Technol. 2017;322:163–173. doi:10.1016/J.SURFCOAT.2017.05.051

Duan H, Yan C, Wang F. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim Acta. 2007;52:3785–3793. doi:10.1016/j.electacta.2006.10.066

Ghasemi A, Raja VS, Blawert C, Dietzel W, Kainer KU. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings. Surf Coatings Technol. 2010;204:1469–1478. doi:10.1016/j.surfcoat.2009.09.069

Gulec AE, Gencer Y, Tarakci M. The characterization of oxide based ceramic coating synthesized on Al-Si binary alloys by microarc oxidation. Surf Coatings Technol. 2015;269:100–107. doi:10.1016/j.surfcoat.2014.12.031

Li K, Li W, Zhang G, Zhu W, Zheng F, Zhang D, et al. Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. J Alloys Compd. 2019;790:650–656. doi:10.1016/J.JALLCOM.2019.03.217

Saheb N, Lamara S, Sahnoune F, Hassan SF. Kinetic analysis of the formation of magnesium aluminate spinel (MgAl2O4) from α-Al2O3 and MgO nanopowders. J Therm Anal Calorim. 2022;147:11549–11559. doi:10.1007/S10973-022-11344-1/TABLES/5

Mikhail SA, King PE. High-temperature thermal analysis study of the reaction between magnesium oxide and silica. J Therm Anal. 1993;40:79–84. doi:10.1007/BF02546557

Zehra T, Patil SA, Shrestha NK, Fattah-alhosseini A, Kaseem M. Anionic assisted incorporation of WO3 nanoparticles for enhanced electrochemical properties of AZ31 Mg alloy coated via plasma electrolytic oxidation. J Alloys Compd. 2022;916:165445. doi:10.1016/J.JALLCOM.2022.165445

Toulabifard A, Rahmati M, Raeissi K, Hakimizad A, Santamaria M. The Effect of Electrolytic Solution Composition on the Structure, Corrosion, and Wear Resistance of PEO Coatings on AZ31 Magnesium Alloy. Coatings. 2020;10:937. doi:10.3390/COATINGS10100937

Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf Coatings Technol. 1999;122:73–93. doi:10.1016/S0257-8972(99)00441-7

Nominé AV,Troughton SC, Nominé AV, Henrion G, Clyne TW. High speed video evidence for localised discharge cascades during plasma electrolytic oxidation. Surf Coatings Technol. 2015;269:125–130. doi:10.1016/j.surfcoat.2015.01.043

Dunleavy CS, Golosnoy IO, Curran JA, Clyne TW. Characterisation of discharge events during plasma electrolytic oxidation. Surf Coatings Technol. 2009;203:3410–3419. doi:10.1016/j.surfcoat.2009.05.004

Jovović J, Stojadinović S, Šišović NM, Konjević N. Spectroscopic study of plasma during electrolytic oxidation of magnesium- and aluminium-alloy. J Quant Spectrosc Radiat Transf. 2012;113:1928–1937. doi:10.1016/j.jqsrt.2012.06.008

Sundararajan G, Rama Krishna L. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf Coatings Technol. 2003;167:269–277. doi:10.1016/S0257-8972(02)00918-0

Troughton SC, Clyne TW. Cathodic discharges during high frequency plasma electrolytic oxidation. Surf Coatings Technol. 2018;352:591–599. doi:10.1016/j.surfcoat.2018.08.049

Hussein RO, Nie X, Northwood DO. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim Acta. 2013;112:111–119. doi:10.1016/J.ELECTACTA.2013.08.137

Pyachin SA, Burkov AA, Kaminskii OI, Zaikova ER. Melting of a Titanium Alloy Under the Action of Electrical Discharges of Different Duration. Russ Phys J. 2019;61:2236–2243. doi:10.1007/S11182-019-01661-8

Ren L, Grew ES, Xiong M, Ma Z. Wagnerite-Ma5bc, a new polytype of Mg2(PO4)(F,OH), from granulite-facies Paragneiss, Larsemann Hills, Prydz Bay, East Antarctica. Can Mineral. 2003;41:393–411. doi:10.2113/GSCANMIN.41.2.393

Duan H, Du K, Yan C., Wang F. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochim Acta. 2006;51:2898–2908. doi:10.1016/j.electacta.2005.08.026

Hwang DY, Kim YM, Shin DH. Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride. Mater Trans. 2009;50:671–678. doi:10.2320/MATERTRANS.MER2008345

Lujun Z, Hongzhan H, Qingmei M, Jiangbo L, Zhengxian L. The mechanism for tuning the corrosion resistance and pore density of plasma electrolytic oxidation (PEO) coatings on Mg alloy with fluoride addition. J Magnes Alloy. 2021. doi:10.1016/J.JMA.2021.10.007

Chen Q, Zheng Y, Dong S, Chen XB, Dong J. Effects of fluoride ions as electrolyte additives for a PEO/Ni-P composite coating onto Mg alloy AZ31B. Surf Coatings Technol. 2021;417:126883. doi:10.1016/j.surfcoat.2021.126883




DOI: https://doi.org/10.15826/chimtech.2023.10.2.12

Copyright (c) 2023 Alisa O. Cheretaeva, Pavel A. Glukhov, Marat R. Shafeev, Alyona G. Denisova, Eugeny D. Borgardt, Anton V. Polunin, Alexander V. Katsman, Mikhail M. Krishtal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice