High purity β-Bi2O3 preparation by thermal decomposition of tartrates
Abstract
Keywords
Full Text:
PDFReferences
Amrani MA, Alrafai HA, Al-nami SY, Labhasetwar NK, Qasem A. Effect of mixing on nickel tartrate and Ni/NiO core/shell nanoparticles: Implications for morphology, magnetic, optical, dielectric and adsorption properties. Opt Mater. 2022;127:112321. doi:10.1016/j.optmat.2022.112321
Ye L, Duan L, Liu W, Hu Y, Ouyang Z, Yang S, Xia Z. Facile method for preparing a nano lead powder by vacuum decomposition from spent lead-acid battery paste: leaching and desulfuration in tartaric acid and sodium tartrate mixed lixivium. Hydrometal. 2020;197:105450. doi:10.1016/j.hydromet.2020.105450
Xu L, Jiao R, Tao X, Yi X, Wei D. One-step thermal decomposition of C4H4FeO6 to Fe3O4@carbon nano-composite for high-performance lithium-ion batteries. Mater Chem Phys. 2020;239:122024. doi:10.1016/j.matchemphys.2019.122024
Li T, Chen J, Ma G. Self-assemble mechanism of nickel nanobelts prepared by sol-precipitation and thermal decomposition route. J Wuhan Univ Technol-Mat Sci Edit. 2022;37:206–211. doi:10.1007/s11595-022-2519-x
Aitlaalim A, Ouanji F, Benzaouak A, Kacimi M, Ziyad M, Liotta LF. Preparation, characterization and catalytic activity in 2 propanol conversion of potassium and antimony mixed oxides. Top Catal. 2020;63:1388–1397. doi:10.1007/s11244-020-01370-4
Bai X, Wang Q, Guan J. Bimetallic Iron–Cobalt Nanoparticles Coated with Amorphous Carbon for Oxygen Evolution. ACS Appl Nano Mater. 2021;4(11):12663–12671. doi:10.1021/acsanm.1c03208
Henaish AMA, Hemeda OM, Dorgham AM, Hamad MA. Characterization of excessive Sm3+ containing barium titanate prepared by tartrate precursor method. J Mater Res Technol. 2020;9(6):15214–15221. doi:10.1016/j.jmrt.2020.10.015
Nighot DV, Khanvilkar MB, Karale NJ, Pawar RA, Gugale GS, Arbuj SS, Nikumbh AK. Investigation on solid state pyrolytic decomposition of bimetallic fumarate and tartrate precursors of Co(II), Ni(II) and Zn(II) with manganese. Mater Today Proc. 2022;49:1351–1359. doi:10.1016/j.matpr.2021.07.057
Ahadiat G, Tabatabaee M, Gholivand K, Zare K, Dusek M, Kucerakova M. A two-dimensional bismuth coordination polymer with tartaric acid: synthesis, characterization and thermal decomposition to Bi2O3 nanoparticles. Main Group Chem. 2017;16:7–16. doi:10.3233/mgc-160216
Morandi P, Flaud V, Tingry S, Cornu D, Holade Y. Tartaric acid regulated the advanced synthesis of bismuth-based materials with tunable performance towards the electrocatalytic production of hydrogen peroxide. J Mater Chem A. 2020;8:18840–18855. doi:10.1039/d0ta06466a
Diktanaite A, Gaidamaviciene G, Kazakevicius, E, Kezionis A, Zalga A. Aqueous sol-gel synthesis, thermal analysis, characterization and electrical properties of V2O5 doped Bi2O3 system. Thermochim Acta. 2020;685:178511. doi:10.1016/j.tca.2020.178511
Afonina LI, Timakova TE, Timakova EV, Gerasimov KB, Yukhin YM. Thermal transformations of bismuth(III) tartrates. Chimica Techno Acta. 2022;9(3): 20229315. doi:10.15826/chimtech.2022.9.3.15
Daminov AS, Yukhin YM, Naydenko ES. Processing of Nitrate Solutions for the Preparation of Basic Bismuth Nitrate and Oxide. Theor Found Chem Eng. 2020;54:1020–1025. doi:10.1134/s0040579520050097
Yukhin YM, Mishchenko KV, Daminov AS. Bismuth preoxidation for preparing solutions of salts. Theor Found Chem Eng. 2017;51:495–502. doi:10.1134/s0040579517040303
Fukami T, Tahara S, Dimyati A. Crystal Structures and Thermal Properties of L-MnC4H4O6·2H2O and DL-MnC4H4O6·2H2O. Inter J Chem. 2020;12(1):78–88. doi:10.5539/ijc.v12n1p78
Fukami T, Tahara S. Structural and thermal investigations of L-CuC4H4O6·3H2O and DL-CuC4H4O6·2H2O single crystals. Inter J Chem. 2021;13(1):38–49. doi:10.5539/ijc.v13n1p38
Zhang X, Yue J, Zhao Y, Yan Z, Zhu G, Liu L, Xu H, Yu A. Synthesis of tetragonal BaTiO3 nano-particle via a novel tartaric acid co-precipitation process. Ceram Int. 2021;47(5):7263–7267. doi:10.1016/j.ceramint.2020.11.006
Sasikala V, Sajan D, Vijayan N, Chaitanya K, Babu Raj MS, Selin Joy BH. Growth, molecular structure, NBO analysis and vibrational spectral analysis of l-tartaric acid single crystal. Spectrochim Acta Part A. 2014;123:127–141. doi:10.1016/j.saa.2013.12.045
Vidya S, Ravikumar C, Hubert Joe I, Kumaradhas P, Devipriya B, Raju K. Vibrational spectra and structural studies of nonlinear optical crystal ammonium D,L-tartrate: a density functional theoretical approach. J Raman Spectrosc. 2011;42:676–684. doi:10.1002/jrs.2743
Bhattacharjee R, Jain YS, Raghubanshi G, Bist HD. Laser Raman and infrared spectra of Rochelle salt crystals. J Raman Spectrosc. 1988;9(1):51–58. doi:10.1002/jrs.1250190108
Xiao J, Zhang H, Xia Y, Li Z, Huang W. Rapid and high-capacity adsorption of sulfonated anionic dyes onto basic bismuth(III) nitrate via bidentate bridging and electrostatic attracting interactions. RSC Adv. 2016;6:39861–39869. doi:10.1039/c6ra03055f
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B: Application in Coordination, Organometallic and Bioinorganic Chemistry. 6th Edition. New Jersey: Wiley & Sons; 2009. 57–61 p. doi:10.1002/9780470405888
Klinkova LA, Nicolaichik VI, Barkovskii NV, Fedotov VK. Thermal stability of Bi2O3. Russ J Inorg Chem. 2007;52:1822–1829. doi:10.1134/S0036023607120030
Blott SJ, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landforms. 2001;26:1237–1248. doi:10.1002/esp.261
Timakova EV, Afonina LI, Yukhin YI, Bulina NV, Volodin VA. Preparation of Bismuth(III) Malates by Precipitation from Nitrate Solutions. Chem Sustain Dev. 2017;25(3):293–300. Available from: https://sibran.ru/upload/iblock/3a2/preparation_of_bismuth_iii_malates_by_precipitation_from_nitrate_solutions.pdf
DOI: https://doi.org/10.15826/chimtech.2023.10.3.04
Copyright (c) 2023 Evgeniya V. Timakova, Tatiana E. Timakova, Liubov I. Afonina
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice