Cover Image

The effect of ammonia activation on the desalination potential of natural zeolite

Aruzhan K. Kenessova, Akmaral B. Rakhym, Bagashar B. Zhaksybay, Gulziya A. Seilkhanova

Abstract


Despite the abundance of water bodies on Earth, there is a limited amount of potable water. Therefore, the desalination process is of great interest. Adsorption of the main contaminants of saline water (Na+, K+, Cl ions) is an alternative process of desalination. In the present work, a sorbent based on natural zeolite (NZ) modified with ammonium chloride (NH4Cl) is obtained and the effect of modification on the removal of Na+ and K+ ions from saline water is studied. According to the Brunauer-Emmett-Teller (BET) analysis, the modification of zeolite with NH4Cl leads to an increase in its surface area (7.85 to 8.09 m2/g). According to the results of the cation exchange capacity (CEC) determination, the modification leads to a decrease in total CEC of zeolite (431.67±29.01 to 300.88±31.86 meq/100 g). According to the obtained results, ammonia modification enhances the adsorption ability of NZ to extract Na+ and K+ ions from saline water. The extraction degree (E) of Na+ ions by NH4-Z increases from 7.93±1.63 to 10.44±1.52%, while for K+ ions it increases about 2 times (27.69±2.45 to 56.46±3.71%). These results indicate that the ammonia-modified NZ can potentially be used as a desalination agent for the removal of Na+ and K+ ions from saline water.

Keywords


natural zeolite; ammonia activation; desalination; sodium adsorption; potassium adsorption

Full Text:

PDF

References


Burn S, Hoang M, Zarzo D, Olewniak F, Campos E, Bolto B, Barron O. Desalination techniques – A review of the opportunities for desalination in agriculture. Desalination. 2015;364:2–16. doi:10.1016/j.desal.2015.01.041

Jones E, Qadir M, van Vliet MTH, Smakhtin V, Kang S. The state of desalination and brine production: A global outlook. Sci Total Environ. 2019;657:1343–1356. doi:10.1016/j.scitotenv.2018.12.076

Sharma S, Bhattacharya A. Drinking water contamination and treatment techniques. Appl Water Sci. 2017;7:1043–1067. doi:10.1007/s13201-016-0455-7

Darre NC, Toor GS. Desalination of Water: a Review. Curr Pollution Rep. 2018;4:104–111. doi:10.1007/s40726-018-0085-9

Elsaid K, Kamil M, Sayed ET, Abdelkareem MA, Wilberforce T, Olabi A. Environmental impact of desalination technologies: A review. Sci Total Environ. 2020;748. doi:10.1016/j.scitotenv.2020.141528

Zotalis K, Dialynas EG, Mamassis N, Angelakis AN. Desalination technologies: Hellenic experience. Water. 2014;6:1134–1150. doi:10.3390/w6051134

Curto D, Franzitta V, Guercio A. A review of the water desalination technologies. Appl Sci. 2021;11:1–36. doi:10.3390/app11020670

Pearce M, Brennan F. Novel findings in desalination. Desalination. 2015;360:13–18. doi:10.1016/j.desal.2014.12.020

Shah KM, Billinge IH, Chen X, Fan HQ, Huang YX, Winton RK, Yip NY. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review. Desalination. 2022;538:115827. doi:10.1016/j.desal.2022.115827

Aende A, Gardy J, Hassanpour A. Seawater desalination: a review of forward osmosis technique, its challenges, and future prospects. 2020;8(8):901. doi:10.3390/pr8080901

Bone SE, Steinruck HG, Toney MF. Advanced characterization in clean water technologies. Joule. 2020;4(8):1637–1659. doi:10.1016/j.joule.2020.06.020

Ray SS, Chen SS, Sangeetha D, Chang HM, Thanh CND, Le QH, Ku HM. Developments in forward osmosis and membrane distillation for desalination of waters. Environ Chem Lett. 2018;16(4):1247–1265. doi:10.1007/s10311-018-0750-7

Ghalavanda Y, Hatamipoura MS, Rahimia A. A review on energy consumption of desalination processes. Desalin Water Treat. 2014;54(6):1526–1541. doi:10.1080/19443994.2014.892837

Shahmirzadi MAA, Hosseini SS, Luo JQ, Ortiz I. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal. J Environ Manage. 2018;215:324–344. doi:10.1016/j.jenvman.2018.03.040

Ng KC, Thu K, Kim Y, Chakraborty A, Amy G. Adsorption desalination: An emerging low-cost thermal desalination method. Desalination. 2013;318:161–179. doi:10.1016/j.desal.2012.07.030

Baile P, Fernandez E, Vidal L, Canals A. Zeolites and zeolite-based materials in extraction and microextraction techniques. Analyst. 2019;144(2):366–387. doi:10.1039/c8an01194j

Wibowo E, Rokhmat M, Khairurrijal S, Abdullah M. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination. 2017;409:146–156. doi:10.1016/j.desal.2017.01.026

Paul B, Dynes JJ, Chang W. Modified zeolite adsorbents for the remediation of potash brine-impacted groundwater: Built-in dual functions for desalination and pH neutralization. Desalination. 2017;419:141–151. doi:10.1016/j.desal.2017.06.009

Alsaman AS, Askalany AA, Ibrahim EMM, Farid AM, Ali ES, Ahmed MS. Characterization and cost analysis of a modified silica gel-based adsorption desalination application. J Clean Prod. 2022;379:134614. doi:10.1016/j.jclepro.2022.134614

Alsaman AS, Ibrahim EMM, Askalany AA, Farid AM, Ali ES, Ahmed MS. Composite material-based a clay for adsorption desalination and cooling applications. Chem Eng Res Des. 2022;188:417–432. doi:10.1016/j.cherd.2022.09.017

Guo XF, Ji ZY, Yuan JS, Zhao YY, Liu J. Recovery of K+ from concentrates from brackish and seawater desalination with modified clinoptilolite. Desalin Water Treat. 2016;579160:6829–6837. doi:10.1080/19443994.2015.1010590

Paul B, Dynes JJ, Chang W. Modified zeolite adsorbents for the remediation of potash brine-impacted groundwater: Built-in dual functions for desalination and pH neutralization. Desalination. 2017;419:141–151. doi:10.1016/j.desal.2017.06.009

Gibb NP, Dynes JJ, Chang W. Synergistic desalination of potash brine-impacted groundwater using a dual adsorbent. Sci Total Environ. 2017:593–594:99–108. doi:10.1016/j.scitotenv.2017.03.139

Kragovic M, Pasalic S, Markovic M, Petrovic M, Nedeljkovic B, Momcilovic M, Stojmenovic M. Natural and modified zeolite-alginate composites. Application for removal of heavy metal Cations from contaminated water solutions. Minerals. 2018;8(1):11. doi:10.3390/min8010011




DOI: https://doi.org/10.15826/chimtech.2023.10.3.05

Copyright (c) 2023 Aruzhan K. Kenessova, Akmaral B. Rakhym, Bagashar B. Zhaksybay, Gulziya A. Seilkhanova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International