Molecular dynamic simulation of the [N(C4H9)4]BF4 / (110) α-Al2O3 interface
Abstract
Keywords
Full Text:
PDFReferences
Timmermans J. Plastic Crystals: A historical review. J Phys Chem Solids. 1961;18:1–8. doi:10.1016/0022-3697(61)90076-2
Parsonage NG, Staveley LAK. Disorder in Crystals. International series of monographs on chemistry. Clarendon University Press: Oxford 1978. 926 p.
MacFarlane DR, Forsyth M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv Mater. 2001;13:957–966. doi:10.1002/1521-4095(200107)13:12/13%3C957::AID-ADMA957%3E3.0.CO;2-%23
Pringle JM, Howlett PC, MacFarlane DR, Forsyth M. Organic ionic plastic crystals: recent advances. J Mater Chem. 2010;20:2056–2062. doi:10.1039/b920406g
Pringle JM. Recent progress in the development and use of organic ionic plastic crystal electrolytes. Phys Chem Chem Phys. 2013;15:1339–1351. doi:10.1039/c2cp43267f
Iwai S, Hattori M, Nakamura D, Ikeda R. Ionic dynamics in the rotator phase of n-alkylammonium chlorides (C6–C10), studied by 1H nuclear magnetic resonance, electrical conductivity and thermal measurements. J Chem Soc Faraday Trans. 1993;89:827–831. doi:10.1039/FT9938900827
Pas SJ, Huang J, Forsyth M, MacFarlane DR, Hill AJ. Defect-assisted conductivity in organic ionic plastic crystals. J Chem Phys. 2005;122:064704. doi:10.1063/1.1845397
Tanabe T, Nakamura D, Ikeda R. Novel ionic plastic phase of [(CH3)4N] SCN obtainable above 455 K studied by proton magnetic resonance, electrical conductivity and thermal measurements. J Chem Soc Faraday Trans. 1991;87:987–990. doi:10.1039/ft9918700987
Seeber AJ, Forsyth M, Forsyth CM, Forsyth SA, Annat G, MacFarlane DR. Conductivity, NMR and crystallographic study of N, N, N, N-tetramethylammonium dicyanamide plastic crystal phases: an archetypal ambient temperature plastic electrolyte material. Phys Chem Chem Phys. 2003;5:2692–2698. doi:10.1039/b212743a
Adebahr J, Grimsley M, Rocher NM, MacFarlane DR, Forsyth M. Rotational and translational mobility of a highly plastic salt: Dimethyl pyrrolidinium thiocyanate. Solid State Ionics. 2008;178:1793–1803. doi:10.1016/j.ssi.2007.12.017
Asayama R, Kawamura J, Hattori T. Phase Transition and Ionic Transport Mechanism of (C4H9)4NI. Chem Phys Letts. 2005;414:87–91. doi:10.1016/j.cplett.2005.08.055
Hayasaki T, Hirakawa S, Honda H. Investigation of new ionic plastic crystals in tetraalkylammonium tetrabuthylborate. Z Naturforsch. 2014;69a:433–440. doi:10.5560/zna.2014-0029
Uvarov NF, Iskakova AA, Bulina NV, Gerasimov KB, Slobodyuk AB, Kavun VYa. Ion conductivity of the plastic phase of the organic salt [(C4H9)4NBF4. Russ J Electrochem. 2015;51:491–494. doi:10.1134/S102319351505016X
Isakova AA, Ulikhin AS, Uvarov NF, Gerasimov KB, Mateishina YG. Comparative study of the ion conductivities of substituted tetrabutylammonium salts (C4H9)4N]BF4 and [(C4H9)4N]. Russ J Electrochem. 2017;53:880–883. doi:10.1134/S1023193517080079
Zhang S, Lu X, Zhou Q, Li X, Zhang X, Li S. Ionic liquids. Physicochemical Properties, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009.
Uvarov NF, Asanbaeva NB, Ulihin AS, Mateyshina YG, Gerasimov KB. Thermal properties and ionic conductivity of tetra-n-butylammonium perchlorate. Crystals. 2022;12:515. doi:10.3390/cryst12040515
Matsumoto K, Harinaga U, Tanaka R, Koyama A, Hagiwara R, Tsunashima K. The structural classification of the highly disordered crystal phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] salts (Nn+ = tetraalkylammonium and Pn+=tetraalkylphosphonium). Phys Chem Chem Phys. 2014;16:23616. doi:10.1039/c4cp03391d
Maier J. Ionic conduction in space charge regions. Progr Solid State Chem. 1995;23:171–263. doi:10.1016/0079-6786(95)00004-E
Uvarov NF. Composite solid electrolytes: recent advances and design strategies. J Solid State Electrochem. 2011;15:367–389. doi:10.1007/s10008-008-0739-4
Ulihin AS, Uvarov NF, Rabadanov KSh, Gafurov MM, Gerasimov KB. Thermal, structural and transport properties of composite solid electrolytes (1–x)(C4H9)4NBF4–xAl2O3. Solid State Ionics. 2022;378:115889. doi:10.1016/j.ssi.2022.115889
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and dynamical heterogeneities in ionic liquids. Chem Rev. 2020;120:5798−5877. doi:10.1021/acs.chemrev.9b00693
Latorre CA, Ewen JP, Gattinoni C, Dini D. Simulating surfactant−iron oxide interfaces: from density functional theory to molecular dynamics. J Phys Chem B. 2019;123:6870−6881. doi:10.1021/acs.jpcb.9b02925
Chung RHF, De Leeuw SW. Ionic conduction in LiI–α, γ-alumina: molecular dynamics study. Solid State Ionics. 2004;175:851–855. doi:10.1016/j.ssi.2004.09.047
Gainutdinov II, Uvarov NF. Molecular dynamic simulation of the CsCl–Al2O3 interface. Solid State Ionics. 2006;177:1631–1634. doi:10.1016/j.ssi.2006.05.026
Petrov AV, Salamatov MS, Ivanov-Schitz AK. Effect of shape Si3O6 clusters on fluoride diffusion in nanocomposites: computational evidence. Ionics. 2021;27:1255–1260. doi:10.1007/s11581-020-03710-6
Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys. 1995;117:1–19. doi:10.1006/JCPH.1995.1039
Mayo SM, Olafson BD, Goddard III WA. DREIDING: A generic force field for molecular simulations. J Phys Chem. 1990;94:8897–8909. doi:10.1021/j100389a010
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502. doi:10.1088/0953-8984/21/39/395502
Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio Jr RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Kucukbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la-Roza A, Paulatto L, Ponce S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter. 2017;29:465901. doi:10.1088/1361-648X/aa8f79
Yu M, Trinkle DR. Accurate and efficient algorithm for Bader charge integration. J Chem Phys. 2011;134:064111. doi:10.1063/1.3553716
Lewis J, Schwarzenbach D, Flack HD. Electric Field Gradients and Charge Density in Corundum, α-Al2O3. Acta Crystallograph. 1982;A38:733–739. doi:10.1107/S0567739482001478
Kapusta B, Guillope M. Molecular dynamics study of the perovskite MgSiO3 at high temperature: structural, elastic and thermodynamical properties. Phys Earth Planet. 1993;75:205. doi:10.1016/0031-9201(93)90002-Q
Xiao Y, Song F, An S, Zeng F, Xu Y, Peng C, Liu H. Quantitative structure-property relationship for predicting the diffusion coefficient of ionic liquids. J Molecular Liquids. 2022;349:118476. doi:10.1016/j.molliq.2022.118476
Rappé A, Goddard W. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95:3358–3363. doi:10.1021/j100161a070
Nakano F. Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics. Computer Phys Communs. 1997;104:59–69. doi:10.1016/S0010-4655(97)00041-6
Rick SW, Stuart SJ, BerneBJ. Dynamical fluctuating charge force fields: Application to liquid water. J Chem Phys. 1994;101:6141–6156. doi:10.1063/1.468398
Verstraelen T, Van Speybroeck V, Waroquier M. The electronegativity equalization method and the split charge equilibration applied to organic systems: Parametrization, validation, and comparison. J Chem Phys. 2009;131:044127. doi:10.1063/1.3187034
Mezger M, Schroder H, Reichert H, Schramm S, Okasinski JS, Schoder S, Honkimaki V, Deutsch M, Ocko BM, Ralston J, Rohwerder M, Stratmann M, Dosch H. Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Sci. 2008;322:424−428. doi:10.1021/acs.jpcb.9b02925
Chaurasiya V, Kumar D, Rai K, Singh J. Heat transfer analysis describing freezing of a eutectic system by a line heat sink with convection effect in cylindrical geometry. Zeitschrift für Naturforschung A. 2022;77(6):589–598. doi:10.1515/zna-2021-0320
Chaurasiya V, Rai K N, Singh J, Heat transfer analysis for the solidification of a binary eutectic system under imposed movement of the material. J Therm Anal Calorim. 2022;147:3229. doi:10.1007/s10973-021-10614-8
Chaurasiya V, Rai K N, Singh J. A study of solidification on binary eutectic system with moving phase change material. Therm Sci Eng Progr. 2021;25:101002. doi:10.1016/j.tsep.2021.101002
DOI: https://doi.org/10.15826/chimtech.2023.10.3.08
Copyright (c) 2023 Igor Gainutdinov, Nikolay Uvarov
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International