Cover Image

Molecular dynamic simulation of the [N(C4H9)4]BF4 / (110) α-Al2O3 interface

Igor Gainutdinov, Nikolay Uvarov

Abstract


The structure and transport properties of the pure salt [N4]BF4 and this salt located in the contact with the (110) surface of a-Al2O3 were studied using a MD computer simulation in order to reveal the effect of the salt/oxide interface on the structure and properties of the salt. The radial distribution functions of the ions and their mean square displacements were analyzed as a function of the temperature during the cooling of the salt. It was found that in all the cases anions are more mobile than cations. The molten phase of [N4]BF4 tends to crystallize at temperature 420 K which is close to the experimental melting point. The salt located in the [N4]BF4/(110)Al2O3 interface exhibits high values of anion self-diffusion coefficients which are higher by 1.2–2 orders of magnitude than in pure salt. This effect is likely to be caused by the formation of a layered atomic structure located within a characteristic thickness of 5 nm. Despite the structuring, the structure of the salt is amorphous, no crystallization-related effect is observed. The results of MD simulations agree with the experimental effect of the conductivity enhancement observed previously in [N4]BF4-Al2O3 nanocomposites.

Keywords


molecular dynamic simulation; tetrabutylammonium borofluorate; composite; organic salts; diffusion; structure

Full Text:

PDF

References


Timmermans J. Plastic Crystals: A historical review. J Phys Chem Solids. 1961;18:1–8. doi:10.1016/0022-3697(61)90076-2

Parsonage NG, Staveley LAK. Disorder in Crystals. International series of monographs on chemistry. Clarendon University Press: Oxford 1978. 926 p.

MacFarlane DR, Forsyth M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv Mater. 2001;13:957–966. doi:10.1002/1521-4095(200107)13:12/13%3C957::AID-ADMA957%3E3.0.CO;2-%23

Pringle JM, Howlett PC, MacFarlane DR, Forsyth M. Organic ionic plastic crystals: recent advances. J Mater Chem. 2010;20:2056–2062. doi:10.1039/b920406g

Pringle JM. Recent progress in the development and use of organic ionic plastic crystal electrolytes. Phys Chem Chem Phys. 2013;15:1339–1351. doi:10.1039/c2cp43267f

Iwai S, Hattori M, Nakamura D, Ikeda R. Ionic dynamics in the rotator phase of n-alkylammonium chlorides (C6–C10), studied by 1H nuclear magnetic resonance, electrical conductivity and thermal measurements. J Chem Soc Faraday Trans. 1993;89:827–831. doi:10.1039/FT9938900827

Pas SJ, Huang J, Forsyth M, MacFarlane DR, Hill AJ. Defect-assisted conductivity in organic ionic plastic crystals. J Chem Phys. 2005;122:064704. doi:10.1063/1.1845397

Tanabe T, Nakamura D, Ikeda R. Novel ionic plastic phase of [(CH3)4N] SCN obtainable above 455 K studied by proton magnetic resonance, electrical conductivity and thermal measurements. J Chem Soc Faraday Trans. 1991;87:987–990. doi:10.1039/ft9918700987

Seeber AJ, Forsyth M, Forsyth CM, Forsyth SA, Annat G, MacFarlane DR. Conductivity, NMR and crystallographic study of N, N, N, N-tetramethylammonium dicyanamide plastic crystal phases: an archetypal ambient temperature plastic electrolyte material. Phys Chem Chem Phys. 2003;5:2692–2698. doi:10.1039/b212743a

Adebahr J, Grimsley M, Rocher NM, MacFarlane DR, Forsyth M. Rotational and translational mobility of a highly plastic salt: Dimethyl pyrrolidinium thiocyanate. Solid State Ionics. 2008;178:1793–1803. doi:10.1016/j.ssi.2007.12.017

Asayama R, Kawamura J, Hattori T. Phase Transition and Ionic Transport Mechanism of (C4H9)4NI. Chem Phys Letts. 2005;414:87–91. doi:10.1016/j.cplett.2005.08.055

Hayasaki T, Hirakawa S, Honda H. Investigation of new ionic plastic crystals in tetraalkylammonium tetrabuthylborate. Z Naturforsch. 2014;69a:433–440. doi:10.5560/zna.2014-0029

Uvarov NF, Iskakova AA, Bulina NV, Gerasimov KB, Slobodyuk AB, Kavun VYa. Ion conductivity of the plastic phase of the organic salt [(C4H9)4NBF4. Russ J Electrochem. 2015;51:491–494. doi:10.1134/S102319351505016X

Isakova AA, Ulikhin AS, Uvarov NF, Gerasimov KB, Mateishina YG. Comparative study of the ion conductivities of substituted tetrabutylammonium salts (C4H9)4N]BF4 and [(C4H9)4N]. Russ J Electrochem. 2017;53:880–883. doi:10.1134/S1023193517080079

Zhang S, Lu X, Zhou Q, Li X, Zhang X, Li S. Ionic liquids. Physicochemical Properties, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009.

Uvarov NF, Asanbaeva NB, Ulihin AS, Mateyshina YG, Gerasimov KB. Thermal properties and ionic conductivity of tetra-n-butylammonium perchlorate. Crystals. 2022;12:515. doi:10.3390/cryst12040515

Matsumoto K, Harinaga U, Tanaka R, Koyama A, Hagiwara R, Tsunashima K. The structural classification of the highly disordered crystal phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] salts (Nn+ = tetraalkylammonium and Pn+=tetraalkylphosphonium). Phys Chem Chem Phys. 2014;16:23616. doi:10.1039/c4cp03391d

Maier J. Ionic conduction in space charge regions. Progr Solid State Chem. 1995;23:171–263. doi:10.1016/0079-6786(95)00004-E

Uvarov NF. Composite solid electrolytes: recent advances and design strategies. J Solid State Electrochem. 2011;15:367–389. doi:10.1007/s10008-008-0739-4

Ulihin AS, Uvarov NF, Rabadanov KSh, Gafurov MM, Gerasimov KB. Thermal, structural and transport properties of composite solid electrolytes (1–x)(C4H9)4NBF4–xAl2O3. Solid State Ionics. 2022;378:115889. doi:10.1016/j.ssi.2022.115889

Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and dynamical heterogeneities in ionic liquids. Chem Rev. 2020;120:5798−5877. doi:10.1021/acs.chemrev.9b00693

Latorre CA, Ewen JP, Gattinoni C, Dini D. Simulating surfactant−iron oxide interfaces: from density functional theory to molecular dynamics. J Phys Chem B. 2019;123:6870−6881. doi:10.1021/acs.jpcb.9b02925

Chung RHF, De Leeuw SW. Ionic conduction in LiI–α, γ-alumina: molecular dynamics study. Solid State Ionics. 2004;175:851–855. doi:10.1016/j.ssi.2004.09.047

Gainutdinov II, Uvarov NF. Molecular dynamic simulation of the CsCl–Al2O3 interface. Solid State Ionics. 2006;177:1631–1634. doi:10.1016/j.ssi.2006.05.026

Petrov AV, Salamatov MS, Ivanov-Schitz AK. Effect of shape Si3O6 clusters on fluoride diffusion in nanocomposites: computational evidence. Ionics. 2021;27:1255–1260. doi:10.1007/s11581-020-03710-6

Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys. 1995;117:1–19. doi:10.1006/JCPH.1995.1039

Mayo SM, Olafson BD, Goddard III WA. DREIDING: A generic force field for molecular simulations. J Phys Chem. 1990;94:8897–8909. doi:10.1021/j100389a010

Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502. doi:10.1088/0953-8984/21/39/395502

Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio Jr RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Kucukbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la-Roza A, Paulatto L, Ponce S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter. 2017;29:465901. doi:10.1088/1361-648X/aa8f79

Yu M, Trinkle DR. Accurate and efficient algorithm for Bader charge integration. J Chem Phys. 2011;134:064111. doi:10.1063/1.3553716

Lewis J, Schwarzenbach D, Flack HD. Electric Field Gradients and Charge Density in Corundum, α-Al2O3. Acta Crystallograph. 1982;A38:733–739. doi:10.1107/S0567739482001478

Kapusta B, Guillope M. Molecular dynamics study of the perovskite MgSiO3 at high temperature: structural, elastic and thermodynamical properties. Phys Earth Planet. 1993;75:205. doi:10.1016/0031-9201(93)90002-Q

Xiao Y, Song F, An S, Zeng F, Xu Y, Peng C, Liu H. Quantitative structure-property relationship for predicting the diffusion coefficient of ionic liquids. J Molecular Liquids. 2022;349:118476. doi:10.1016/j.molliq.2022.118476

Rappé A, Goddard W. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95:3358–3363. doi:10.1021/j100161a070

Nakano F. Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics. Computer Phys Communs. 1997;104:59–69. doi:10.1016/S0010-4655(97)00041-6

Rick SW, Stuart SJ, BerneBJ. Dynamical fluctuating charge force fields: Application to liquid water. J Chem Phys. 1994;101:6141–6156. doi:10.1063/1.468398

Verstraelen T, Van Speybroeck V, Waroquier M. The electronegativity equalization method and the split charge equilibration applied to organic systems: Parametrization, validation, and comparison. J Chem Phys. 2009;131:044127. doi:10.1063/1.3187034

Mezger M, Schroder H, Reichert H, Schramm S, Okasinski JS, Schoder S, Honkimaki V, Deutsch M, Ocko BM, Ralston J, Rohwerder M, Stratmann M, Dosch H. Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Sci. 2008;322:424−428. doi:10.1021/acs.jpcb.9b02925

Chaurasiya V, Kumar D, Rai K, Singh J. Heat transfer analysis describing freezing of a eutectic system by a line heat sink with convection effect in cylindrical geometry. Zeitschrift für Naturforschung A. 2022;77(6):589–598. doi:10.1515/zna-2021-0320

Chaurasiya V, Rai K N, Singh J, Heat transfer analysis for the solidification of a binary eutectic system under imposed movement of the material. J Therm Anal Calorim. 2022;147:3229. doi:10.1007/s10973-021-10614-8

Chaurasiya V, Rai K N, Singh J. A study of solidification on binary eutectic system with moving phase change material. Therm Sci Eng Progr. 2021;25:101002. doi:10.1016/j.tsep.2021.101002




DOI: https://doi.org/10.15826/chimtech.2023.10.3.08

Copyright (c) 2023 Igor Gainutdinov, Nikolay Uvarov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice