Cover Image

Decomposition of light hydrocarbons on a Ni-containing glass fiber catalyst

M. V. Popov, M. V. Chudakova, P. B. Kurmashov, A. G. Bannov, A. V. Kleimenov

Abstract


The work is devoted to the study of the novel process of catalytic decomposition of light hydrocarbons on a catalyst at temperatures of 550 °С and 600 °C at various pressures. The CVD process is a new COx-free approach for hydrogen production. A glass fiber fabric was used as a catalyst, which was preliminarily modified by the application of additional outer layers of NiO and porous silica. A technical mixture of propane and butane was used as feedstock. The main purpose is to investigate the effects of pressure and temperature on the production of hydrogen and carbon nanofibers over a glass-based catalyst. As a result of the decomposition of the mixture, the yield of hydrogen was 266–848 L/gcat, and that of carbon nanofibers was 3–10 g/gcat. Increasing the pressure of propane-butane mixture decomposition led to an increase of the catalyst lifetime. The highest yield of hydrogen and carbon nanofibers was achieved at 1 bar and 600 °C.

Keywords


carbon nanofibers; hydrogen; glass fiber; hydrocarbons; synthesis

Full Text:

PDF

References


Parkinson B, Tabatabaei M, Upham DC, Ballinger B, Greig C, Smart S, McFarland E. Hydrogen production using me-thane: Techno-economics of decarbonizing fuels and chem-icals. Int J Hydrog Energy. 2018;43:2540–2555. doi:10.1016/j.ijhydene.2017.12.081

Qian JX et al. Methane decomposition to produce CO -free hydrogen and nano-carbon over metal catalysts: A review. 2020. Int J Hydrog Energy;45:7981–8001. doi:10.1016/j.ijhydene.2020.01.052

Global Hydrogen Review 2021. Int Energy Agency. 2021. https://iea.blob.core.windows.net/assets/3a2ed84c-9ea0-458c-9421-d166a9510bc0/GlobalHydrogenReview2021.pdf

Abbas HF, Wan Mohd WD. Hydrogen production by methane decomposition: A review. Int J Hydrog Energy. 2010;35:1160–1190. doi:10.1016/j.ijhydene.2009.11.036

Popov MV, Zazhigalov SV, Larina TV, Cherepanova SV, Ban-nov AG, Lopatin SA, Zagoruiko AN. Glass fiber supports modified by layers of silica and carbon nanofibers. Catalysis Sustain Energy. 2017;4(1):1–6. doi:10.1515/cse-2017-0001

Khudaish EA, Al-Badri A. A modified Hummers soft oxida-tive method for functionalization of CNTs: Preparation, characterization and potential application for selective de-termination of norepinephrine. Synth Met. 2021;277:116803. doi:10.1016/j.synthmet.2021.116803

Shibaev A, Yusin S, Maksimovskii E, Ukhina A, Bannov AG. Chemical treatment of graphite nanoplatelets and their use in supercapacitors. Russ J Appl Chem. 2016;89(5):739–745. doi:10.1134/S1070427216050098

Uvarov NF, Mateyshina YG, Ulihin A, Yusin S, Varentsova V, Varentsov V. Surface electrochemical treatment of car-bon materials for supercapacitors. ECS Meet Abstr. 2009;37:2817–2817. doi:10.1149/1.3299286

Sysoev VI, Gusel’nikov AV, Katkov MV, Asanov IP, Bu-lusheva LG, Okotrub AV. Sensor properties of electron beam irradiated fluorinated graphite. J Nanophotonics. 2015;10:012512. doi:10.1117/1.jnp.10.012512

Rakow EG. Nanotubes and fullerens. M: Logos; 2006. 376 p.

Brester AE, Golovakhin VV, Novgorodtseva ON, Lapekin NI, Shestakov AA, Ukhina AV, et al. Chemically treated carbon nanofiber materials for supercapacitors. Dokl Chem. 2021;501:264–269. doi:10.1134/s0012500821120016

Bannov AG, Prášek J, Jašek O, Zajíčková L. Investigation of pristine graphite oxide as room-temperature chemiresis-tive ammonia gas sensing material. Sensors. 2017;17. doi:10.3390/s17020320

Liu S, Wang Z, Zhang Y, Zhang C, Zhang T. High perfor-mance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sensors Actuators B Chem. 2015;211:318–324. doi:10.1016/j.snb.2015.01.127

Li L, He S, Liu M, Zhang C, Chen W. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem. 2015;87:1638–1645. doi:10.1021/ac503234e

Baranov DV, Zagoruiko AN, Zazhigalov SV, Lopatin SA, Mikenin PE, Pisarev DA, Popov MV. Microfiber catalyst or carrier for catalysts and method for preparing the same. Pa-tent RF 2624216. 2017 July 03.

Reshetenko TV, Avdeeva LB, Ismagilov ZR, Chuvilin AL, Ushakov VA. Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition. Appl Catalysis A Gen. 2003;247:51–63. doi:10.1016/S0926-860X(03)00080-2

Soloviov EA, Kuvshinov GG. Influence of the catalyst com-position on the process of hydrogen production by selective catalytic pyrolysis of propane. Al’ternativnaya Energetika I Ekologiya. 2011;10:127–132.

Tursuniva NG, Musulmanov NKh, Faizullaev NI, Ikramov A. Obtaining nanocarbon and hydrogen by catalytic decompo-sition of low molecular weight hydrocarbons. Universum: khim. biol. 2023;103:43-52 (in Russian)

Zagoruiko AN, Bal'zhinimaev BS. Kataliticheskie protsessy na osnove steklovoloknistykh katalizatorov [Katalitichesky processes on the basis of glass-fiber catalysts]. Khimich-eskaya promyshlennost' segodnya – Chemical Industry To-day. 2011;2:5–11. (In Russian)

Zagoruiko AN, Lopatin SA, Bal’zhinimaev BS, Gil’mutdinov NR, Sibagatullin GG, Pogrebtsov VP, Nazmieva IF. The pro-cess for catalytic incineration of waste gas on IC-12-S102 platinum glass fiber catalyst. Catalysis Industry. 2010;2(2):113–117.

Balzhinimaev BS, Paukshtis EA, Vanag SV, Suknev AP, Zago-ruiko AN. Glass-fiber catalysts: Novel oxidation catalysts, catalytic technologies for environmental protection. Catalysis Today. 2010;151(1–2):195–199. doi:10.1016/j.cattod.2010.01.011

Shinkarev VV, Glushenkov AM, Kuvshinov DG, Kuvshinov GG New effective catalysts based on mesoporous nano-fibrous carbon for selective oxidation of hydrogen sulfide. Applied Catalysis B: Environmental. 2009;85:180–191. doi:10.1016/j.apcatb.2008.07.011

Kuvshinov DG, Kurmashov PB, Bannov AG, Popov MV, Kuvshinov GG. Synthesis of Ni-based catalysts by hexa-methylenetetramine-nitrates solution combustion method for co-production of hydrogen and nanofibrous carbon from methane. Int J Hydrogen Energy. 2019;44(31):16271–16286. doi:10.1016/j.ijhydene.2019.04.179




DOI: https://doi.org/10.15826/chimtech.2023.10.3.06

Copyright (c) 2023 M.V. Popov, M.V. Chudakova, P.B. Kurmashov, A.G. Bannov, A.V. Kleimenov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice