Cover Image

The impact of dimethylformamide on the synthesis of graphene quantum dots derived from graphene oxide

Khuong T. Truong, Thach H. Pham, Khai V. Tran

Abstract


Graphene quantum dots (GQDs) have garnered immense interest in recent years due to their unique optical, electrical, and chemical properties, making them promising candidates for various applications in optoelectronics, bioimaging, and sensing. However, enhancing the control over the size, surface chemistry, and optical properties of GQDs remains a significant challenge. In this study, a novel recipe was proposed to successfully synthesize various GQDs via a typical solvothermal process, which has proven to be a versatile and scalable approach. In addition to the main ingredient – graphene oxide suspension, dimethylformamide (DMF) and hydrogen peroxide serving as a cutting agent were added to the reaction mixture. This synthesis method was found to be more promising than the reference one in which DMF was replaced by double distilled water. Through systematic experimentation, we demonstrated that the addition of DMF enables the successful GQD production over a wider range of reaction times; hence, the UV absorption band and photoluminescence properties of GQDs can be better adjusted. The dependence of photoluminescence on the excitation wavelength was observed in the as-prepared materials as they were excited with a range of wavelengths from 360 to 480 nm. The obtained insights not only advance our understanding of GQD synthesis but also open up avenues for tailoring their properties for specific applications.

Keywords


graphene quantum dots; graphene oxide; solvothermal; photoluminescence; dimethylformamide

Full Text:

PDF

References


Allen M J, Tung V C, Kaner R B. Honeycomb Carbon: A Re-view of Graphene. Chem Rev. 2010;110(1):132–145. doi:10.1021/cr900070d

Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008;8(3):902–907. doi:10.1021/nl0731872

Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J-J, Ajayan P M. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–849. doi:10.1021/nl2038979

Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22(6):734–738. doi:10.1002/adma.200902825

Zheng P, Wu N. Fluorescence and Sensing applications of graphene oxide and graphene quantum dots: a review. Chem Asian J. 2017;12(18):2343–2353. doi:10.1002/asia.201700814

Tian P, Tang L, Teng K S, Lau S P. Graphene quantum dots from chemistry to applications. Mater Today Chem. 2018;10:221–258. doi:10.1016/j.mtchem.2018.09.007

Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C. One-pot hydro-thermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem. 2012;36(1):97–101. doi:10.1039/C1NJ20658C

Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B. Surface Chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater. 2012;22(22):4732–4740. doi:10.1002/adfm.201201499

Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a ro-bust biological label for stem cells. J Mater Chem. 2012;22(15):7461–7467. doi:10.1039/C2JM16835A

Wang J, Zhou J, Zhou W, Shi J, Ma L, Chen W, Wang Y, He D, Fu M, Zhang Y. Synthesis, photoluminescence and bio-targeting applications of blue graphene quantum dots. J Nanosci Nanotechnol. 2016;16(4):3457–3467. doi:10.1166/jnn.2016.11817

Ding Z, Hao Z, Meng B, Xie Z, Liu J, Dai L. Few-layered gra-phene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy. 2015;15:186–192. doi:10.1016/j.nanoen.2015.04.019

Liu Q, Sun J, Gao K, Chen N, Sun X, Ti D, Bai C, Cui R, Qu L. Graphene quantum dots for energy storage and conversion: from fabrication to applications. Mater Chem Front. 2020;4(2):421–436. doi:10.1039/C9QM00553F

Zhang J, Tong T, Zhang L, Li X, Zou H, Yu J. Enhanced per-formance of planar perovskite solar cell by graphene quan-tum dot modification. ACS Sustainable Chem Eng. 2018;6(7):8631–8640. doi:10.1021/acssuschemeng.8b00938

Tam TV, Hur SH, Chung JS, Choi WM. Ultraviolet light sen-sor based on graphene quantum dots/reduced graphene ox-ide hybrid film. Sens Actuator A Phys. 2015;233:368–373. doi:10.1016/j.sna.2015.07.038

Zhuang S, Chen Y, Zhang W, Chen Z, Wang Z. Humidity sensor and ultraviolet photodetector based on carrier trap-ping effect and negative photoconductivity in graphene quantum dots. Sci China Phys Mech. 2017;61(1):014211. doi:10.1007/s11433-017-9089-6

Li Y-H, Zhang L, Huang J, Liang R-P, Qiu J-D. Fluorescent graphene quantum dots with a boronic acid appended bi-pyridinium salt to sense monosaccharides in aqueous solu-tion. Chem Commun. 2013;49(45):5180–5182. doi:10.1039/C3CC40652K

Kumawat MK, Thakur M, Gurung R B, Srivastava R. Gra-phene quantum dots from mangifera indica: application in near-infrared bioimaging and intracellular nanothermom-etry. ACS Sustainable Chem Eng. 2017;5(2):1382–1391. doi:10.1021/acssuschemeng.6b01893

Su Z, Shen H, Wang H, Wang J, Li J, Nienhaus GU, Shang L, Wei G. Motif-designed peptide nanofibers decorated with graphene quantum dots for simultaneous targeting and imaging of tumor cells. Adv Funct Mater. 2015;25(34):5472–5478. doi:10.1002/adfm.201502506

Zhang J, Ma Y-q, Li N, Zhu J-l, Zhang T, Zhang W, Liu B. Preparation of graphene quantum dots and their applica-tion in cell imaging. J Nanomater. 2016;2016:9245865. doi:10.1155/2016/9245865

Wu D, Liu Y, Wang Y, Hu L, Ma H, Wang G, Wei Q. Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots. Sci Rep. 2016;6(1):20511. doi:10.1038/srep20511

Thakur M, Mewada A, Pandey S, Bhori M, Singh K, Sharon M, Sharon M. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C. 2016;67:468–477. doi:10.1016/j.msec.2016.05.007

Yan Y, Chen J, Li N, Tian J, Li K, Jiang J, Liu J, Tian Q, Chen P. Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS Nano. 2018;12(4):3523–3532. doi:10.1021/acsnano.8b00498

Yeh T-F, Teng C-Y, Chen S-J, Teng H. Nitrogen-doped gra-phene oxide quantum dots as photocatalysts for overall wa-ter-splitting under visible light illumination. Adv Mater. 2014;26(20):3297–3303. doi:10.1002/adma.201305299

Yeh T-F, Chen S-J, Teng H. Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposi-tion. Nano Energy. 2015;12:476–485. doi:10.1016/j.nanoen.2015.01.021

Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J-J. Focusing on lu-minescent graphene quantum dots: current status and fu-ture perspectives. Nanoscale. 2013;5(10):4015–4039. doi:10.1039/C3NR33849E

Tang L, Ji R, Li X, Teng KS, Lau SP. Size-dependent structur-al and optical characteristics of glucose-derived graphene quantum dots. Part Part Syst Charact. 2013;30(6):523–531. doi:10.1002/ppsc.201200131

Das SK, Luk CM, Martin WE, Tang L, Kim DY, Lau SP, Rich-ards CI. Size and dopant dependent single particle fluores-cence properties of graphene quantum dots. J Phys Chem C. 2015;119(31):17988–17994. doi:10.1021/acs.jpcc.5b05969

Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339–1339. doi:10.1021/ja01539a017

Trinh TTPNX, Giang NTH, Huong LM, Thinh DB, Dat NM, Trinh DN, Hai ND, Oanh DTY, Nam HM, Phong MT, Hieu NH. Hydrothermal synthesis of titanium dioxide/graphene aerogel for photodegradation of methylene blue in aqueous solution. J Sci Adv Mater Devices. 2022;7(2):100433. doi:10.1016/j.jsamd.2022.100433

Tian R, Zhong S, Wu J, Jiang W, Wang T. Facile hydrother-mal method to prepare graphene quantum dots from gra-phene oxide with different photoluminescences. RSC Adv. 2016;6(46):40422–40426. doi:10.1039/C6RA00780E

Halder A, Godoy-Gallardo M, Ashley J, Feng X, Zhou T, Hos-ta-Rigau L, Sun Y. One-pot green synthesis of biocompatible graphene quantum dots and their cell uptake studies. ACS Appl Bio Mater. 2018;1(2):452–461. doi:10.1021/acsabm.8b00170

Amir Faiz MS, Che Azurahanim CA, Raba'ah SA, Ruzniza MZ. Low cost and green approach in the reduction of gra-phene oxide (GO) using palm oil leaves extract for poten-tial in industrial applications. Results Phys. 2020;16:102954. doi:10.1016/j.rinp.2020.102954

Thi PT, Thang LV, Khai TV, Diem TX, Nghia CNT, Ngan TTT, Tri LM, Vinh NN, Hien NM. Synthesis of Ag/GO nanocompo-site with promising photocatalytic ability for reduction re-action of p-nitrophenol. Mater Res Express. 2021;8:105009. doi:10.1088/2053-1591/ac2ead

Kumar S, Ojha A K, Ahmed B, Kumar A, Das J, Materny A. Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor elec-trode materials. Mater Today Commun. 2017;11:76–86. doi:10.1016/j.mtcomm.2017.02.009

Khai TV, Lam DT, Thu VL, Kim WH. A two-step method for the preparation of highly conductive graphene film and its gas-sensing property. Mater Sci Appl. 2015;6(11):963–977. doi:10.4236/msa.2015.611097

Chhabra VA, Kaur R, Kumar N, Deep A, Rajesh C, Kim K-H. Synthesis and spectroscopic studies of functionalized gra-phene quantum dots with diverse fluorescence characteris-tics. RSC Adv. 2018;8(21):11446–11454. doi:10.1039/C8RA01148F

Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738–4743. doi:10.1016/j.carbon.2012.06.002

Ţucureanu V, Matei A, Avram A M. FTIR spectroscopy for carbon family study. Crit Rev Anal Chem. 2016;46(6):502–520. doi:10.1080/10408347.2016.1157013

Muzart J. N,N-Dimethylformamide: much more than a sol-vent. Tetrahedron. 2009;65(40):8313–8323. doi:10.1016/j.tet.2009.06.091

Mandal B, Saha S, Das D, Panda J, Das S, Sarkar R, Tudu B. Supercapacitor performance of nitrogen doped graphene synthesized via DMF assisted single-step solvothermal method. FlatChem. 2022;34:100400. doi:10.1016/j.flatc.2022.100400

Lapekin NI, Anufrieva TV, Ukhina AV, Shestakov AA, Ban-nov AG. Solvent effect on the NO2 sensing properties of multi-walled carbon nanotubes. Chim Techno Acta. 2022;9(3):20229311. doi:10.15826/chimtech.2022.9.3.11

Gupta V, Chaudhary N, Srivastava R, Sharma G D, Bhardwaj R, Chand S. Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc. 2011;133(26):9960–9963. doi:10.1021/ja2036749

Kudin K N, Ozbas B, Schniepp H C, Prud'homme R K, Aksay I A, Car R. Raman spectra of graphite oxide and functional-ized graphene sheets. Nano Lett. 2008;8(1):36–41. doi:10.1021/nl071822y

Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photo-luminescence mechanism in carbon dots (graphene quan-tum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015;8(2):355–381. doi:10.1007/s12274-014-0644-3

Yeh T-F, Huang W-L, Chung C-J, Chiang I T, Chen L-C, Chang H-Y, Su W-C, Cheng C, Chen S-J, Teng H. Elucidating quantum confinement in graphene oxide dots based on ex-citation-wavelength-independent photoluminescence. J Phys Chem Lett. 2016;7(11):2087–2092. doi:10.1021/acs.jpclett.6b00752

Lingam K, Podila R, Qian H, Serkiz S, Rao A M. Evidence for edge-state photoluminescence in graphene quantum dots. Adv Funct Mater. 2013;23(40):5062–5065. doi:10.1002/adfm.201203441

Wang L, Zhu S-J, Wang H-Y, Qu S-N, Zhang Y-L, Zhang J-H, Chen Q-D, Xu H-L, Han W, Yang B, Sun H-B. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano. 2014;8(3):2541–2547. doi:10.1021/nn500368m

Fang B-Y, Li C, Song Y-Y, Tan F, Cao Y-C, Zhao Y-D. Nitro-gen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells. Biosens Bioelectron. 2018;100:41–48. doi:10.1016/j.bios.2017.08.057




DOI: https://doi.org/10.15826/chimtech.2023.10.4.05

Copyright (c) 2023 Khuong T. Truong, Thach H. Pham, Khai V. Tran

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice