Cover Image

Influence of anionic surfactant on stability of nanoparticles in aqueous solutions

Dmitry O. Zelentsov, Yuliya Yu. Petrova, Alexander V. Korobkin, Anastasia A. Ivanova, Alexey N. Cheremisin, Ivan I. Shanenkov, Alexander Ya. Pak, Yuliya G. Mateyshina


Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe and effective application of nanoparticles, for instance, in the oil industry. As conventional oil reserves are depleted, it is necessary to advance chemical enhanced oil recovery (cEOR) techniques to develop unconventional oil reservoirs. Nanoparticles modified by surfactants can be a promising reagent in cEOR. These nanomaterials can reduce interfacial tension and change the wettability of reservoir rock, which leads to an increase in oil recovery. However, the application of nanoparticles is limited by their substantial aggregation in aqueous solutions. The purpose of this work is to select nanoparticles for obtaining stable sols in water in the presence of an anionic surfactant and to optimize the conditions (pH) for further modifying the nanoparticles with the anionic surfactant. Sodium dodecyl sulfate (SDS) is used as an anionic surfactant. The aggregation of oxide and carbon nanoparticles in water and anionic surfactant solutions was studied by laser diffraction, dynamic and electrophoretic light scattering methods. Most of the studied nanoparticles in water form aggregates with bi-, three- and polymodal particle size distributions. TiO2 nanoparticles obtained by plasma dynamic synthesis form the most stable sols in anionic surfactant solutions. The range of 5–7 pH is defined as optimal for their modification with surfactants. The stability of carbon nanoparticles in aqueous solutions increases significantly in the presence of a surfactant. The obtained results form the basis for further research on the modification of marked nanoparticles in surfactant solutions.


nanoparticles; anionic surfactant; titan oxide; carbon nanoparticles; aggregation

Full Text:



Alsaba MT, Al Dushaishi MF, Abbas AK. A comprehensive review of nanoparticles applications in the oil and gas in-dustry. J Pet Explor Prod Technol. 2020;10(5):1389–1399. doi:10.1007/s13202-019-00825-z

Franco CA, Zabala R, Cortés FB. Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. J Pet Sci Eng. 2017;157:39–55. doi:10.1016/j.petrol.2017.07.004

Chen L, Zhu X, Wang L, Yang H, Wang D, Fu M. Experi-mental study of effective amphiphilic graphene oxide flooding for an ultralow-permeability reservoir. Energy Fuels. 2018;32(11):11269–11278. doi:10.1021/acs.energyfuels.8b02576

Goshtasp C. Effect of nano titanium dioxide on heavy oil recovery during polymer flooding. Petroleum Sci Technol. 2016;34(7):633–641. doi:10.1080/10916466.2016.1156125

Dai C, Li H, Zhao M, Wu Y, You Q, Sun Y, Zhao G, Xu K. Emulsion behavior control and stability study through dec-orating silica nano-particle with dimethyldodecylamine ox-ide at n-heptane/water interface. Chem Eng Sci. 2018;179:73–82. doi:10.1016/j.ces.2018.01.005

Eltoum H, Yang YL, Hou JR. The effect of nanoparticles on reservoir wettability alteration: a critical review. Petrole-um Sci. 2021;18:136–153. doi:10.1007/s12182-020-00496-0

Karimi A, Fakhroueian Z, Bahramian A, Khiabani NP, Dara-bad JB, Azin R, Arya S. Wettability alteration in carbonates using zirconium oxide nanofluids: EOR Implications. Ener-gy Fuels. 2012;26(2):1028–1036. doi:10.1021/ef201475u

Fan H, Striolo A. Nanoparticle effects on the water-oil in-terfacial tension. Phys Rev E. 2012;86(5):051610. doi:10.1103/PhysRevE.86.051610

Almahfood M, Bai B. The synergistic effects of nanoparti-cle-surfactant nanofluids in EOR applications. J Petroleum Sci Eng. 2018;171:196–210. doi:10.1016/j.petrol.2018.07.030

Zhong X, Li C, Li Y, Pu H, Zhou Y, Zhao J. Enhanced oil re-covery in high salinity and elevated temperature condi-tions with a zwitterionic surfactant and silica nanoparti-cles acting in synergy. Energy Fuels. 2020;34(3):2893–2902. doi:10.1021/acs.energyfuels.9b04067

Arab D, Kantzas A, Bryant SL. Nanoparticle stabilized oil in water emulsions: A critical review. J Pet Sci Eng. 2018;163:217–242. doi:10.1016/j.petrol.2017.12.091

Behzadi A, Mohammadi A. Environmentally responsive surface-modified silica nanoparticles for enhanced oil re-covery. J Nanopart Res. 2016;18:1–19. doi:10.1007/s11051-016-3580-1

Ngouangna EN, Manan MA, Oseh JO, Norddin MNA, Agi A, Gbadamosi AO. Influence of (3–Aminopropyl) triethox-ysilane on silica nanoparticle for enhanced oil recovery. J Mol Liquids. 2020;315:113740. doi:10.1016/j.molliq.2020.113740

Zhao T, Chen J, Chen Y, Zhang Y, Peng J. Study on synergis-tic enhancement of oil recovery by halloysite nanotubes and glucose-based surfactants. J Dispersion Sci Technol. 2021;42:934–946. doi:10.1080/01932691.2020.1721297

Son HA, Lee T. Enhanced oil recovery with size-dependent interactions of nanoparticles surface-modified by zwitteri-onic surfactants. Appl Sci. 2021;11(16):7184. doi:10.3390/app11167184

Ahmed A, Saaid IM, Ahmed AA, Pilus RM, Baig MK. Evaluat-ing the potential of surface-modifed silica nanoparticles using internal olefn sulfonate for enhanced oil recovery. Pet Sci. 2019;17:722–733. doi:10.1007/s12182-019-00404-1

Pal N, Verma A, Ojha K, Mandal A. Nanoparticle-modified gemini surfactant foams as efficient displacing fluids for enhanced oil recovery. J Mol Liquids. 2020;310:113193. doi:10.1016/j.molliq.2020.113193

Venancio JCC, Nascimento RSV, Perez-Gramatges A. Colloi-dal stability and dynamic adsorption behavior of nanofluids containing alkyl-modified silica nanoparticles and anionic surfactant. J Mol Liquids. 2020;308:1–7. doi:10.1016/j.molliq.2020.113079

Moghadam TF, Azizian S, Wettig S. Synergistic behaviour of ZnO nanoparticles and gemini surfactants on the dynamic and equilibrium oil/water interfacial tension. Phys Chem Chem Phys. 2015;17(11):1–8. doi:10.1039/C5CP00510H

Pillai P, Sawa RK, Singha R, Padmanabhan E, Mandal A. Effect of synthesized lysine-grafted silica nanoparticle on surfactant stabilized O/W emulsion stability: Application in enhanced oil recovery. J Pet Sci Eng. 2019;177:861–871. doi:10.1016/j.petrol.2019.03.007

Saigal T, Dong H, Matyjaszewski K, Tilton RD. Pickering Emulsions Stabilized by Nanoparticles with Thermally Re-sponsive Grafted Polymer Brushes. Langmuir. 2010;26(19):15200–15209. doi:10.1021/la1027898

Dai C, Li H, Zhao M, Wu Y, You Q, Sun Y, Zhao G, Xu K. Emulsion behavior control and stability study through dec-orating silica nano-particle with dimethyldodecylamine ox-ide at n-heptane/water interface. Chem Eng Sci. 2018;179:73–82. doi:10.1016/j.ces.2018.01.005

Omran M, Akarri S, Torsaeter O. The effect of wettability and flow rate on oil displacement using polymer-coated sil-ica nanoparticles: a microfluidic study. Proces. 2020;8(8):991. doi:10.3390/pr8080991

Mishchenko KV, Gerasimov KB, Yukhin YM. Thermal de-composition of some bismuth oxocarboxylates with for-mation of β-Bi2O3. Mater Today Proc. 2020;25(3):391–394. doi:10.1016/j.matpr.2019.12.102

Pak AY, Povalyaev PV, Frantsina EV, Grinko AA, Petrova YY, Arkachenkova VV. Obtaining carbon graphite-like nano-materials in asphaltene-based waste recycling. Bulletin of the Tomsk Polytechnic University. Geo Assets Eng. 2022;333(12):25–36.

Sivkov A, Vympina Y, Ivashutenko A, Rakhmatullin I, Shanenkova Y, Nikitin D, Shanenkov I. Plasma dynamic synthesis of highly defective fine titanium dioxide with tunable phase composition. Ceram Int. 2022;48(8):10862–10873. doi:10.1016/j.ceramint.2021.12.303

Viades-Trejo J, Gracia-Fadrique J. Spinning drop method: From Young–Laplace to Vonnegut. Colloids Surfaces A Phys-icochem Eng Aspects. 2007;302(1–3):549–552. doi:10.1016/j.colsurfa.2007.03.033

Cao Y, Zhao RH, Zhang L, Xu ZC, Jin ZQ, Luo L, Zhang L, Zhao S. Effect of electrolyte and temperature on interfacial tensions of alkylbenzene sulfonate solutions. Energy Fuels. 2012;26(4):2175–2181. doi:10.1021/ef201982s

Sharma S, Reddy AVD, Jayarambabu N, Kumar NVM, Sain-eetha A, Rao KV, Kailasa S. Synthesis and characterization of Titanium dioxide nanopowder for various energy and environmental applications. Mater Today Proc. 2020;26(1):158–161. doi:10.1016/j.matpr.2019.09.203


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2023 Dmitry O. Zelentsov, Yuliya Yu. Petrova, Alexander V. Korobkin, Anastasia A. Ivanova, Alexey N. Cheremisin, Ivan I. Shanenkov, Alexander Ya. Pak, Yuliya G. Mateyshina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2023
ISSN 2411-1414 (Online)
Copyright Notice