Cover Image

Synthesis and properties of polymer electrolytes based on polyurethane elastomer and lithium salts

Nikita Fedorov, Artem Ulihin, Nikolai Uvarov

Abstract


Polymer solid electrolytes were obtained by swelling the polyurethane elastomer with solutions of lithium salts LiBF4 and LiClO4 in DMSO at different concentration of lithium salt. The swelling effect was found to decrease with the increase in the salt concentration, whereas, the ionic conductivity has a maximum of 6–8·10–4 S/cm at 5 wt.% lithium salt. The salt solutions incorporated into the polymer pores have melting points ranging from –10 to 2 °C and de-swelling takes place at low temperatures. The obtained polyurethane elastomer materials have a high conductivity and may be promising for use in flexible lithium polymer batteries.

Keywords


polymer solid electrolytes; polyurethane elastomer; swelling effect; ionic conductivity; effect of the salt concentration on swelling and conductivity.

Full Text:

PDF

References


Armand M, Tarascon JM. Building better batteries. Nat. 2008;451(7179):652–657. doi:10.1038/451652a

Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid a battery of choices. Sci. 2011;334(6058):928–935. doi:10.1126/science1212741

Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019;31(50):1902029. doi:10.1002/adma.201902029

Zhang D, Meng X, Hou W, Hu W, Mo J, Yang T, Zhang W, Fan Q, Liu L, Jiang B, Chu L, Li M. Solid polymer electrolytes Ion conduction mechanisms and enhancement strategies. Nano Res Energy. 2023;2:e9120050. doi:10.26599/NRE.2023.9120050

Agrawal RC, Pandey GP. Solid polymer electrolytes: materials designing and all-solid-state battery applications an overview. Phys. 2008;41(22):223001. doi:10.1088/0022-3727/41/22/223001

Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev. 2011;40:2525–2540. doi:10.1039/C0CS00081G

Rosero D, Meneses J, Uribe-Kaffure R. Composite polymer electrolytes based on (PEO)4CF3COOLi and multi-walled carbon nanotube (MWCNT). Polym. 2023;15(1):49. doi:10.3390/polym15010049

Sun C, Liu J, Gong Y, Wilkinson D, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363–386. doi:10.1016/j.nanoen.2017.01.028

Francielli S, Barna J, Wang J, Biria S, Ian D. Solid polymer electrolyte from photo-crosslinked polytetrahydrofuran and a cycloaliphatic epoxide for lithium-ion conduction. MRS Advances. 2020;5:2467–2476. doi:10.1557/adv.2020.274

Zhao H, Zhang W, Yin X, Wu Y, Du C, Zhao W, Zhaoab L, Liu C. Conductive polyurethane elastomer electrolyte (PUEE) materials for anodic bonding. RSC Advances. 2020;10:13267–13276. doi:10.1039/c9ra10944g

Gupta NV, Shivakumar HG. Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iran J Pharmac Res. 2012;11(2):481–493 doi:10.22037/IJPR.2012.1097

Victorov A, Radke C, Prausnitz J. Molecular thermodynamics for swelling of a mesoscopic ionomer gel in 1:1 salt solutions. Phys Chem Chem Phys. 2006;8:264–278. doi:10.1039/b512748c

Miguel I, Rosero D, Nori M, Meneses J, Uribe Kaffure R. Thermal properties of composite polyme relectrolytes poly(ethylene oxide) sodium trifluoroacetate aluminum oxide (PEO)10CF3COONa + x wt.% Al2O3. Mater. 2019;12(9):1464. doi:10.3390/ma12091464

Dimitriyev MS, Chang YW, Goldbart PM, Nieves AF. Swelling thermodynamics and phase transitions of polymer gels. Nano Futures. 2019;3(4):042001. doi:10.1088/2399-1984/ab45d5

Wilcox KG, Kozawa SK, Morozova S. Fundamentals and mechanics of polyelectrolyte gels: Thermodynamics, swelling, scattering, and elasticity. Chem Phys Rev. 2021;2(4):041309 doi:10.1063/5.0048152

Okumura D, Chester SA. Ultimate swelling described by limiting chain extensibility of swollen elastomers. Int J Mechan Sci. 2018;144:531–539. doi:10.1016/j.ijmecsci.2018.06.011

Yu Y, Landis C.M, Huang R. Salt-Induced Swelling and Volume Phase Transition of Polyelectrolyte Gels. J Appl Mechanics. 2017;84(5):051005. doi:10.1115/1.4036113

Kou R, Zhang J, Wang T, Liu G. Interactions between polyelectrolyte brushes and hofmeister ions chaotropes versus kosmotropes. Langmuir. 2015;31(38):10461−10469. doi:10.1021/acs.langmuir.5b02698

Son H, Woo HS, Park VS, Min JY, Kim DW. Polyurethane-based elastomeric polymer electrolyte for lithium metal polymer cells with enhanced thermal safety. Electrochem Soc. 2020;167(8):080525. doi:10.1149/1945-7111/ab8ed2

Zhang Q, Wena Y, Liu K, Liu N, Du Y, Mac C, Zhou L, Liang Y, Jin Y. Study of solid polyurethane electrolytes synthesized from HDI and PEO of different molecular weight. Electroanal Chem.2021;893:115305. doi:10.1016/j.jelechem.2021.115305




DOI: https://doi.org/10.15826/chimtech.2023.10.3.11

Copyright (c) 2023 Nikita Fedorov, Artem Ulihin, Nikolai Uvarov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice