Use of electrochemical impedance spectroscopy to assess the stability of the anion exchange membrane MA-41, modified by poly-N,N-diallylmorpholine bromide in overlimiting current modes
Abstract
Keywords
Full Text:
PDFReferences
Strathmann H. Electrodialysis, a mature technology with a multitude of new applications. Desalination. 2010;264:268–288. doi:10.1016/j.desal.2010.04.069
Urtenov MK, Uzdenova AM, Kovalenko AV, Nikonenko VV, Pismenskaya ND, Vasil’eva VI, Sistat P, Pourcelly G. Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis mem-brane cells. J Membr Sci. 2013;447:190–202. doi:10.1016/j.memsci.2013.07.033
Nikonenko VV, Kovalenko AV, Urtenov MK, Pismenskaya ND, Han J, Sistat P, Pourcelly G. Desalination at overlimit-ing currents: State-of-the-art and perspectives. Desalina-tion. 2014;342:85–106. doi:10.1016/j.desal.2014.01.008
Zabolotskiy VI, But AY, Vasil’eva VI, Akberova EM, Melnikov SS. Ion transport and electrochemical stability of strongly basic anion-exchange membranes under high current elec-trodialysis conditions. J Membr Sci. 2017;526:60–72. doi:10.1016/j.memsci.2016.12.028
Nikonenko VV, Mareev SA, Pis’menskaya ND, Uzdenova AM, Kovalenko AV, Urtenov MK, Pourcelly G. Effect of electro-convection and its use in intensifying the mass transfer in electrodialysis. Russ J Electrochem. 2017;53:1122–1144. doi:10.1134/S1023193517090099
Bauer B, Strathmann H, Effenberger F. Anion-exchange membranes with improved alkaline stability. Desalination. 1990;79:125–144. doi:10.1016/0011-9164(90)85002-R
Akberova EM, Malyhin MD. Strukturnye i fiziko-himicheskie harakteristiki anionoobmennyh membran MA-40 i MA-41 posle termohimicheskogo vozdejstviya [Struc-tural and physico-chemical characteristics of anion-exchange membranes MA-40 and MA-41 after thermochem-ical exposure. Sorption and chromatographic processes]. Sorbcionnye i hromatograficheskie processy. 2014;14(2):232–239. Russian.
Shaposhnik VA, Kastyuchik AS, Kozaderova OA. Irreversible dissociation of water molecules on the ion-exchange mem-brane-electrolyte solution interface in electrodialysis. Russ J Electrochem. 2008;44:1073–1077. doi:10.1134/S1023193508090139
Loza SA, Smyshlyaev NA, Korzhov AN, Romanyuk NA. Elec-trodialysis concentration of sulfuric acid. Chim Techno Ac-ta. 2021;8(1):20218106. doi:10.15826/chimtech.2021.8.1.06
Andreeva MA, Gil VV, Pismenskaya ND, Nikonenko VV, Dammak L, Larchet C, Grande D, Kononenko NA. Effect of homogenization and hydrophobization of a cation-exchange membrane surface on its scaling in the presence of calcium and magnesium chlorides during electrodialysis. J Membr Sci. 2017;540:183–191. doi:10.1016/j.memsci.2017.06.030
Pismenskaya ND, Belova EI, Nikonenko VV, Zabolotsky VI, Lopatkova GY, Karzhavin Y N, Larchet C. Lower rate of H+(OH–) ions generation at an anion-exchange membrane in electrodialysis. Desalination Water Treat. 2010;21:109–114. doi:10.5004/dwt.2010.1268
Slouka Z, Senapati S, Yan Y, Chang HC. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signa-tures. Langmuir. 2013;29:8275–8283. doi:10.1021/la4007179
Bondarev D, Melnikov S, Zabolotskiy V. New homogeneous and bilayer anion-exchange membranes based on N, N-diallyl-N, N-dimethylammonium chloride and ethyl meth-acrylate copolymer. J Membr Sci. 2023;675:121510. doi:10.1016/j.memsci.2023.121510
Knyaginicheva EV, Belashova ED, Pis'menskaya ND. El-ektrohimicheskie harakteristiki membrany AMH, modifici-rovannoj sil'nymi bifunkcional'nymi polielektrolitami. [Electrochemical characteristics of the AMX membrane modified with strong bifunctional polyelectrolytes.] Sorbcionnye i hromatograficheskie processy. 2014;14(5):864–868. Russian.
Butylskii DY, Troitskiy VA, Sharafan MV, Pismenskaya ND, Nikonenko VV. Scaling-resistant anion-exchange mem-brane prepared by in situ modification with a bifunctional polymer containing quaternary amino groups. Desalina-tion. 2022;537:115821. doi:10.1016/j.desal.2022.115821
Marino MG, Kreuer KD. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. ChemSusChem. 2015;8:513–523. doi:10.1002/cssc.201403022
Cotanda P, Petzetakis N, Jiang X, Stone G, Balsara NP. Hy-droxide-ion transport and stability of diblock copolymers with a polydiallyldimethyl ammonium hydroxide block. J Polym Sci Part A Polym Chem. 2017;55(13):2243–2248. doi:10.1002/pola.28611
Olsson JS, Pham TH, Jannasch P. Poly (N,N-diallylazacycloalkane) s for anion-exchange membranes functionalized with N-spirocyclic quaternary ammoni-umcation. Macromolec. 2017;50:2784–2793. doi:10.1021/acs.macromol.7b00168
Pham TH, Olsson JS, Jannasch P. Poly (arylene alkylene) s with pendant N-spirocyclic quaternary ammonium cations for anion exchange membranes. J Mater Chem A. 2018;6:16537–16547. doi:10.1039/C8TA04699A
Zabolotskii VI, Bondarev DA, Bespalov AV. Electrochemical and mass transport characteristics of the strongly basic MA-41 membrane modified by poly-N,N-diallylmorpholinium. Russ J Electrochem. 2018;54:963–969. doi:10.1134/S1023193518130529
Krol JJ, Wessling M, Strathmann H. Concentration polariza-tion with monopolar ion exchange membranes: current-voltage curves and water dissociation. J Membr Sci. 1999;162:145–154. doi:10.1016/S0376-7388(99)00133-7
Nikonenko SV, Urtenov MK, Kovalenko AV, Semenchin EA, Nikonenko VV. Meaning of the diffusion coefficient in Peers equation for calculating limiting current density. Numerical analysis results. Condensed Matter and Inter-phases. 2011;13(3):320–326. [Internet] https://journals.vsu.ru/kcmf/article/view/1059 Accessed on 24 July 2023.
Sistat P, Kozmai A, Pismenskaya N, Larchet C, Pourcelly G, Nikonenko V. Low-frequency impedance of an ion-exchange membrane system. Electrochim Acta. 2008;53(22):6380–6390. doi:10.1016/j.electacta.2008.04.041
Zabolotsky VI, Novak L, Kovalenko AV, Nikonenko VV, Ur-tenov MH, Lebedev KA, But AY. Electroconvection in sys-tems with heterogeneous ion-exchange membranes. Petrol Chem. 2017;57:779–789. doi:10.1134/S0965544117090109
Pismenskaya ND, Pokhidnia EV, Pourcelly G, Nikonenko VV. Can the electrochemical performance of heterogeneous ion-exchange membranes be better than that of homogene-ous membranes? J Membr Sci. 2018;566.54–68. doi:10.1016/j.memsci.2018.08.055
Gelferix F. Ionity Osnovy ionnogo obmena [Ionites. Basics of ion exchange]. Moscow: Izdat. Inostran. Lit; 1962. 491 p. Russian.
Demina OA, Demin AV, Gnusin NP, Zabolotskii VI. Effect of an aprotic solvent on the properties and structure of ion-exchange membranes. Polymer Sci Ser A. 2010;52(12):1270–1282. doi:10.1134/S0965545X10120059
Kniaginicheva E, Pismenskaya N, Melnikov S, Belashova E, Sistat P, Cretin M, Nikonenko V. Water splitting at an ani-on-exchange membrane as studied by impedance spectros-copy. J Membr Sci. 2015;496:78–83. doi:10.1016/j.memsci.2015.07.050
Pismenskaya ND, Rybalkina OA, Kozmai AE, Tsygurina KA, Melnikova ED, Nikonenko VV. Generation of H+ and OH− ions in anion-exchange membrane/ampholyte-containing solution systems: A study using electrochemical impedance spectroscopy. J Membr Sci. 2020;601:117920. doi:10.1016/j.memsci.2020.117920
Barsoukov E, Macdonald JR. Impedance spectroscopy: theo-ry, experiment, and applications, second ed., New Jersey: John Wiley & Sons; 2005. 560 p.
Barbero G. Warburg’s impedance revisited. Phys. Chem. Chem. Phys. 2016;18:29537–29542. doi:10.1039/C6CP05049B
Zabolockij VI, Shel'deshov NV, Gnusin NP. Dissociaciya molekul vody v sistemah s ionoobmennymi membranami [Dissociation of water molecules in systems with ion-exchange membranes.]. Uspekhi himii. 1988;57(8):1403–1414. Russian. doi:10.1070/RC1988v057n08ABEH003389
Hurwitz HD, Dibiani R. Experimental and theoretical inves-tigations of steady and transient states in systems of ion exchange bipolar membranes. J Membr Sci. 2004;228:17–43. doi:10.1016/j.memsci.2003.09.009
Umnov VV, Shel’deshov NV, Zabolotskii VI. Current-voltage curve for the space charge region of a bipolar membrane. Russ J Electrochem. 1999;35:871–878
DOI: https://doi.org/10.15826/chimtech.2023.10.4.04
Copyright (c) 2023 Denis A. Bondarev, Aslan R. Achoh, Alexander V. Bespalov, Stanislav S. Melnikov, Mikhail V. Sharafan, Viktor I. Zabolotskiy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice