Synthesis of highly-porous nitrogen-doped carbon materials by pyrolysis of melamine-formaldehyde resin using a hard template
Abstract
The use of nitrogen-doped carbon materials as electrodes in supercapacitors is a promising area of research. In this study highly-porous nitrogen-containing carbon materials were obtained by pyrolysis of melamine formaldehyde resin in the presence of nanocrystalline MgO as a hard template that was washed off after the pyrolysis. Magnesium citrate was used as a precursor for the synthesis of the template agent in situ during the pyrolysis of the resin. The obtained materials were characterized by X-ray diffraction, BET nitrogen adsorption method and Raman spectroscopy. The presence of nitrogen in the amount of 4 atomic percent was proved by XPS spectroscopy. The specific surface area was found to increase monotonically from 10 to 1300 m2/g with an increase in the content of magnesium citrate in the initial mixture. The samples showed high capacitance of 120 F/g in 1 M H2SO4 electrolyte and can be used in supercapacitors.
Keywords
Full Text:
PDFReferences
Lang JW, Kong LB, Liu M, Luo YC, Kang L. Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J Solid State Electrochem. 2010;14:1533–1539. doi:10.1007/s10008-009-0984-1
Gao D, Liu R, Yu W, Luo Z, Liu C, Fan S. Gravity-induced self-charging in carbon nanotube/polymer supercapacitors. J Phys Chem C. 2019;123(9):5249–5254. doi:10.1021/acs.jpcc.8b11644
Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 2010;4(4):1963–1970. doi:10.1021/nn1000035
Qu Y, Zhang X, Lü W. et al. All-solid-state flexible supercapacitor using graphene/g-C3N4 composite capacitor electrodes. J Mater Sci. 2020;55:16334–16346. doi:10.1007/s10853-020-05156-7
Wei H, Wang H, Li A, Li H, Cui D, Dong M, Lin J, Fan J, Zhang J, Hou H, Shi Y, Zhou D, Guo Z. Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. J Alloys Compd. 2019. doi:10.1016/j.jallcom.2019.153111
Du J, Zhang Y, Wu H, Hou S, Chen A. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitors. Carbon. 2020;156:523–528. doi:10.1016/j.carbon.2019.09.091
Vijayakumar M, Santhosh R, Adduru J, Rao TN, Karthik M. Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon. 2018;140:465–476. doi:10.1016/j.carbon.2018.08.052
Yu J, Wang M, Xu P, Cho S-H, Suhr J, Gong K, Meng L, Huang L, Byun J-H, Oh Y, Yan Y, Chou T-W. Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber. Carbon. 2017;119:332–338. doi:10.1016/j.carbon.2017.04.052
Ni G, Qin F, Guo Z, Wang J. Nitrogen-doped asphaltene-based porous carbon fibers as supercapacitor electrode material with high specific capacitance. Electrochimica Acta. 2019;33:135270. doi:10.1016/j.electacta.2019.135270
Wen Z, Wang X, Mao S, Bo Z, Kim H, Cui S, Lu G, Feng X, Chen J. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater. 2012;24(41):5610–5616. doi:10.1002/adma.201201920
Xie J-M, Zhuang R, Du Y-X, Pei Y-W, Tan D-M, Xu F. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries. New Carbon Mater. 2023;38(2):305–316. doi:10.1016/S1872-5805(22)60630-9
Wu Z-S, Tan Y-Z, Zheng S, Wang S, Parvez K, Qin J, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. J Am Chem Soc. 2017;139(12):4506–4512. doi:10.1021/jacs.7b00805
Bondarde MP, Wadekar PH, Some S. Synthesis of sulfur doped carbon nanoparticle for the improvement of supercapacitive performance. J Energy Storage. 2020;32:101783. doi:10.1016/j.est.2020.101783
Gunasekaran SS, Gopalakrishnan A, Subashchandrabose R, Badhulika S. Single Step, direct pyrolysis assisted synthesis of nitrogen-doped porous carbon nanosheets derived from bamboo wood for high energy density asymmetric supercapacitor. J Energy Storage. 2021;42:103048. doi:10.1016/j.est.2021.103048
Wang L, Sun J, Zhang H, Xu L, Liu G. Preparation of benzoxazine-based N-doped mesoporous carbon material and its electrochemical behaviour as supercapacitor. J Electroanal Chem. 2020;868:114196. doi:10.1016/j.jelechem.2020.114196
Chae JE, Annaka K, Hong K, Lee S-I, Munakata H, Kim S-S, Kanamura K. Electrochemical characterization of phosphorous-doped soft carbon using single particle for lithium battery anode. Electrochimica Acta. 2014;130:60–65. doi:10.1016/j.electacta.2014.03.009
Patiño J, López-Salas N, Gutiérrez MC, Carriazo D, Ferrer ML, Monte F. Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. J Mater Chem. 2016;4:1251–1263. doi:10.1039/C7TA90286G
Wang D, Wang Z, Li Y, Dong K, Shao J, Luo S, et al. In situ double-template fabrication of boron-doped 3d hierarchical porous carbon network as anode materials for Li-and Na-ion batteries. Appl Surf Sci. 2019;464:422–428. doi:10.1016/j.apsusc.2018.09.035
Poornima BH, Vijayakumar T. Hydrothermal synthesis of Boron -doped porous carbon from Azadirachta Indica wood for supercapacitor application. Inorg Chem Comm. 2022;145:109953. doi:10.1016/j.inoche.2022.109953
Patiño J, López-Salas N, Gutiérrez MC, Carriazo D, Ferrer ML, del Monte F. Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. J Mater Chem. 2016;4:1251–1263. doi:10.1039/C5TA09210H
Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38:2520. doi:10.1039/B813846J
Candelaria SL,Garcia DD, Liua D, Cao G. Nitrogen modification of highly porous carbon for improved supercapacitor performance. J Mater Chem. 2012;22:9884–9889. doi:10.1039/C2JM30923H
Zou K, Deng Y, Chen J, Qian Y, Yang Y, Li Y, Chen G. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J Power Sources. 2018;378:579–588. doi:10.1016/j.jpowsour.2017.12.081
Li S, Fan Z. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors. Microporous Mesoporous Mater. 2019;274:313–317. doi:10.1016/j.micromeso.2018.09.002
Cazetta AL, Zhang T, Silva TL, Almeida VC, Asefa T.Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Appl Catal B Environ. 2018;225:30–39. doi:10.1016/j.apcatb.2017.11.050
Guan ZRX, Liu H, Xu B, Hao X, Wang ZX, Chen LQ. Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. J Mater Chem A. 2015;3(15):7849–7854. doi:10.1039/c5ta01446h
Cui H, Chen H, Guo Z, Xu J, Shen J. Preparation of high surface area mesoporous melamine formaldehyde resins. Microporous Mesoporous Mater. 2020;309:110591. doi:10.1016/j.mcromeso.2020.110591
Yuan Y. Preparation of nitrogen doped carbon materials and analysis of their electrochemical performance. Int J Electrochem Sci. 2022;17(8):220825. doi:10.20964/2022.08.19
Liu H, Deng Y, Mao J, Chen M, Hu J, Ju Z, Xing Z, Cao X. Characteristics and electrochemical performances of nitrogen-doped graphene prepared using different carbon and nitrogen sources as anode for lithium ion batteries. Int J Electrochem Sci. 2021;16(4):210459. doi:10.20964/2021.04.03
Sinelnikova YE, Uvarov NF. Synthesis of nanocrystalline magnesium oxide by thermolysis of magnesium citrate. Mendeleev Comm. 2022;23(5):697–699. doi:10.1016/j.mencom.2022.09.044
Bokobza L, Bruneel J-L, Couzi M. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib Spectrosc. 2014;74:57–63. doi:10.1016/j.vibspec.2014.07.009
Tuinstra F, Coenig JL. Characterization of graphite fiber surface with Raman spectroscopy. J Compos Mater. 1970;4:492–499. doi:10.1177/002199837000400405
Jeon I-Y, Noh H-J, Baek J-B. Nitrogen-doped carbon nanomaterials: synthesis, characteristics and applications. Chem Asian J. 2020;15:2282–2293. doi:10.1002/asia.201901318
Béguin F, Raymundo-Piñero E, Frackowiak E. Electrical double-layer capacitors and pseudocapacitors. in: carbons for electrochemical energy storage and conversion systems. Taylor and Fransis LLC., 2010. Chapter 8. P.329–375. doi:10.1201/9781420055405-c8
Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochimica Acta. 1990;35(1):263–267. doi:10.1016/0013-4686(90)85068-X
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7:1597–1614. doi:10.1039/c3ee44164d
Frackowiak E, Lota G, Machnikowski J, Kierzek K, Vix C, Beguin F. Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim Acta. 2006;51(11):2209–2214. doi:10.1016/j.electacta.2005.04.080
Centeno TA, Stoeckli F. The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons. Electrochimica Acta. 2006;52:560–566. doi:10.1016/j.electacta.2006.05.035
Li X, Zhang W, Wu M, Li S, Li XL, Li ZG. Multiple-heteroatom doped porous carbons from self-activation of lignosulfonate with melamine for high performance supercapacitors. Int J Biol Macromol. 2021;183:950–961. doi:10.1016/j.ijbiomac.2021.05.028
DOI: https://doi.org/10.15826/chimtech.2023.10.3.13
Copyright (c) 2023 Yuliya Sinelnikova, Alexander Nizovskii , Nikolai Uvarov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice