Cover Image

Features of calcium hexaaluminate formation in alumina-zirconia ceramics

Nina Cherkasova, Kristina Antropova, Ruslan Kuzmin, Kemal Emurlaev, Ivanna Kuchumova, Nomina Burkhinova, Yulia Zobova

Abstract


Alumina-zirconia composites containing calcium hexaaluminate in the amount from 0 to 15 wt.% were investigated. The materials were obtained by water dispersion, granulation, axial pressing, and free sintering. Density and open porosity were determined by the hydrostatic weighing method. Phase analysis was performed using synchrotron radiation. Structural investigations were conducted using scanning and transmission electron microscopy. Vickers hardness was determined at a load of 10 kg. Fracture toughness was determined by the indentation method. With increasing CaAl12O19 content in the composites, the relative density decreased from 98.5% to 91.8%, and the open porosity increased from 0.2 to 1.4%. The lattice parameters of t-ZrO2 crystal lattice did not change up to 12 wt.% CaAl12O19, and the degree of tetragonality was 1.435. The degree of tetragonality decreased for the material with 15 wt.% CaAl12O19 and reached 1.420. The lattice parameters of CaAl12O19 decreased with increasing content. Platelet size increased with increasing calcium hexaaluminate content. For the materials containing up to 9 wt.% CaAl12O19, the average length of the platelets was 2 μm, the width was 0.4 μm, and the aspect ratio was 5. For the material with maximum calcium hexaaluminate content, the average length of the platelets was 4.2 μm, the width was 0.6 μm, and the aspect ratio was 7. With increasing CaAl12O19 content, the hardness decreased from 1700±25 to 1390±30 Hv, and the critical stress intensity factor increased by 34% to 6.7±0.3 MPa·m1/2.

Keywords


CaAl12O19; alumina-zirconia; synchrotron; fracture toughness; platelets; TEM

Full Text:

PDF

References


Yıldız BK, Tür YK. Effect of ZrO2 content on the microstructure and flexural strength of Al2O3–ZrO2 composites with the stored failure energy-fragmentation relations. Ceram Int. 2021;47(24):34199–34206. doi:10.1016/j.ceramint.2021.08.329

Anjaneyulu B, Nagamalleswara Rao G, Prahlada Rao K. Development, mechanical and tribological characterization of Al2O3 reinforced ZrO2 ceramic composites. Mater Today Proc. 2021;37:584–591. doi:10.1016/j.matpr.2020.05.594

Smuk B, Szutkowska M, Walter J. Alumina ceramics with partially stabilized zirconia for cutting tools. J Mater Process Technol. 2003;133(1–2):195–198. doi:10.1016/S0924-0136(02)00232-7

Kern F, Gadow R. In Situ Platelet Reinforcement of Alumina and Zirconia Matrix Nanocomposites – One Concept, Different Reinforcement Mechanisms. Adv Sci Technol. 2014;87:118–125. doi:10.4028/www.scientific.net/AST.87.118

Fornabaio M, Palmero P, Traverso R, Esnouf C, Reveron H, Chevalier J, Montanaro L. Zirconia-based composites for biomedical applications: Role of second phases on composition, microstructure and zirconia transformability. J Eur Ceram Soc. 2015;35(14):4039–4049. doi:10.1016/j.jeurceramsoc.2015.04.027

Piconi C, Maccauro G, Muratori F, Prever EB Del. Alumina and zirconia ceramics in joint replacements. J Appl Biomater Funct Mater. 2003;1(1):19–32. doi:10.1177/228080000300100103

Chen Z, Chawla K., Koopman M. Microstructure and mechanical properties of in situ synthesized alumina/Ba-β-alumina/zirconia composites. Mater Sci Eng A. 2004;367(1–2):24–32. doi:10.1016/j.msea.2003.09.070

Kern F, Gommeringer A. Reinforcement Mechanisms in yttria-ceria-co-stabilized zirconia- alumina-strontium hexaaluminate composite ceramics. J Ceram Sci Technol 2018;98:93–98. doi:10.4416/JCST2017-00046

Zhang X, Liang J, Li J, Zeng Y, Hao S, Liu P, Na H. The properties characterization and strengthening-toughening mechanism of Al2O3-CA6-MA-Ni multi-phase composites prepared by adding calcined dolomite. Mater Charact. 2022;186:111810. doi:10.1016/J.MATCHAR.2022.111810

Sirotinkin V, Podzorova L, Il’icheva A. Comparative X-ray diffraction study of the Yb2O3 stabilized zirconia ceramics doped with SrO and CaO. Mater Chem Phys. 2022;277:125496. doi:10.1016/J.MATCHEMPHYS.2021.125496

Cinibulk MK. Hexaluminates as a cleavable fiber–matrix interphase: synthesis, texture development, and phase compatibility. J Eur Ceram Soc. 2000;20(5):569–582. doi:10.1016/S0955-2219(99)00255-1

Tian M, Wang XD, Zhang T. Hexaaluminates: a review of the structure, synthesis and catalytic performance. Catal Sci Technol. 2016;6(7):1984–2004. doi:10.1039/C5CY02077H

Sktani ZDI, Azhar AZA, Ratnam MM, Ahmad ZA. The influence of in-situ formation of hibonite on the properties of zirconia toughened alumina (ZTA) composites. Ceram Int. 2014;40(4):6211–6217. doi:10.1016/j.ceramint.2013.11.076

Nagaoka T, Yasuoka M, Hirao K, Kanzaki S, Yamaoka Y. Effects of CaO addition on sintering and mechanical properties of Al2O3. J Mater Sci Lett. 1996;15(20):1815–1817. doi:10.1007/BF00275351

Asmi D, Low IM, O’Connor BH. Physical, thermal, and mechanical properties of Al2O3-CaAl12O19 composites processed by in-situ reaction sintering. J Sains MIPA Univ Lampung. 2012;4(1):1–8.

Podzorova LI, Il’icheva AA, Pen’kova OI, Antonova OS, Baikin AS, Konovalov AA. Al2O3-based ceramic composites with a high brittle fracture resistance. Inorg Mater. 2019;55(6):628–33. doi:10.1134/S0020168519060128

Ismail H, Mohamad H. Effects of CaCO3 additive on the phase, physical, mechanical, and microstructural properties of zirconia-toughened alumina-CeO2-Nb2O5 ceramics. Ceram Int. 2023;49(22):36850–36856. doi:10.1016/j.ceramint.2023.09.015

Burger W, Richter HG. High Strength and Toughness Alumina Matrix Composites by Transformation Toughening and «In Situ» Platelet Reinforcement (ZPTA) – The New Generation of Bioceramics. Key Eng Mater. 2000;192–195:545–548. doi:10.4028/www.scientific.net/KEM.192-195.545

Naga SM, Elshaer M, Awaad M, Amer AA. Strontium hexaaluminate/ZTA composites: Preparation and characterization. Mater Chem Phys. 2019;232:23–27. doi:10.1016/j.matchemphys.2019.04.055

Arab A, Ahmad R, Ahmad ZA. Effect of SrCO3 addition on the dynamic compressive strength of ZTA. Int J Miner Metall Mater. 2016;23(4):481–489. doi:10.1007/s12613-016-1259-3

Vishista K, Gnanam FD. Effect of strontia on the densification and mechanical properties of sol–gel alumina. Ceram Int. 2006;32(8):917–922. doi:10.1016/J.CERAMINT.2005.06.014

Podzorova LI, Il’icheva AA, Sirotinkin VP, Antonova OS, Baikin AS, Kutuzova VE, Pen’kova OI. Ceramic composites of the zirconium dioxide and aluminum oxide system including strontium hexaaluminate. Glas Ceram (English Transl Steklo i Keramika). 2021;78(5–6):231–236. doi:10.1007/S10717-021-00385-X

Shi S, Cho S, Goto T, Sekino T. Role of CeAl11O18 in reinforcing Al2O3/Ti composites by adding CeO2. Int J Appl Ceram Technol. 2021;18(1):170–181. doi:10.1111/ijac.13629

Liu M, Wang Z, Luan X, Wu J, Li Q. Effects of CeO2 and Y2O3 on the interfacial diffusion of Ti/Al2O3 composites. J Alloys Compd. 2016;656:929–935. doi:10.1016/j.jallcom.2015.10.043

Roduit N. JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.3.4.

Niihara K, Morena R, Hasselman DPH. Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett. 1982;1(1):13–16. doi:10.1007/BF00724706

Cui S, Wang Q, Zhou Y, Mao D, Bao J, Song X. Effect of nickel oxide and titanium oxide on the microstructural, optical, and mechanical properties of calcium hexaaluminate ceramics. Ceram Int. 2021;47(24):35302–35311. doi:10.1016/j.ceramint.2021.09.073

Cherkasova NY, Bataev AA, Veselov SV, Kuzmin RI, Stukacheva NS, Zimogliadova TA. Structure and fracture toughness of ceramics based on Al2O3 and ZrO2 with SrAl12O19 additive. Lett Mater. 2019;9(2). doi:10.22226/2410-3535-2019-2-179-184

Suzuki Y, Nishihashi K. Microstructures and mechanical properties of reactively sintered CaAl12O19/CaAl4O7 porous composites. Ceram Int. 2023;49(18):29427–29432. doi:10.1016/j.ceramint.2023.06.004

Zhang X, Zeng Y, Liang J, Li J, Hao S, Wang Y. The microstructure and mechanical properties of Ni/Al2O3 composites by in-situ generated CaAl12O19 and ZrO2 via hot pressing sintering. Ceram Int. 2020;46(9):13144–13150. doi:10.1016/j.ceramint.2020.02.088

Gogotsi GA. Fracture toughness of ceramics and ceramic composites. Ceram Int. 2003;29(7):777–784. doi:10.1016/S0272-8842(02)00230-4

Evans AG, Charles EA. Fracture toughness determinations by indentation. J Am Ceram Soc. 1976;59(7–8):371–372. doi:10.1111/j.1151-2916.1976.tb10991.x

Cherkasova N, Kuzmin R, Veselov S, Antropova K, Ruktuev A, Ogneva T, Tyurin A, Kuchumova I, Khabirov R. Influence of strontium hexaaluminate percentage on the structure and properties of alumina-zirconia ceramics. Mater Chem Phys. 2022;288:126424. doi:10.1016/j.matchemphys.2022.126424

Cherkasova NY, Kuz’min RI, Antropova KA, Burkhinova NY. Rheological characteristics of suspensions and structure of Al2O3–CaO and Al2O3–SrO composites. Refract Ind Ceram. 2022;63(3):311–314. doi:10.1007/s11148-022-00727-4




DOI: https://doi.org/10.15826/chimtech.2023.10.3.17

Copyright (c) 2023 Nina Cherkasova, Kristina Antropova, Ruslan Kuzmin, Kemal Emurlaev, Ivanna Kuchumova, Nomina Burkhinova, Yulia Zobova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice