Cover Image

Effect of sintering duration on structure and properties of Ni-Al metal-intermetallic composites produced by SPS

Tatiana Ogneva, Alexander Anisimov, Ruslan Kuzmin, Andrey Tyurin, Yulia Emurlaeva, Natalya Aleksandrova

Abstract


The fabrication of Ni-Al based metal-intermetallic layered (MIL) composites is one of the actively developing directions in the production of materials for aircraft and space industries. Alternating hard intermetallic layers with ductile metal layers provides a unique combination of mechanical properties. In this study, metal-intermetallic layered composites consisting of Ni and nickel aluminides were fabricated using spark plasma sintering (SPS) of Ni and Al foils 100 and 25 μm in thickness, respectively. Samples sintered at 1100 °C for 0.5, 3, and 8 min were obtained. The purpose of this study was to fabricate Ni-Al MIL composites with increased strength properties using SPS technique and to investigate the effect of sintering duration on structure and properties. The structure of the samples sintered for 0.5 min consisted of Ni layers and intermetallic layers containing the sublayers with stoichiometric and Ni-rich B2 NiAl, L10 twinned martensite NiAl. The tensile strength of such composites was 485 MPa. The intermetallic layers in the sample sintered for 3 min have more Ni-rich NiAl, martensite NiAl, and Ni3Al phases, which promoted to an increase in tensile strength to 575 MPa. The sample sintered for 8 min consisted of Ni and a solid solution of Al in Ni and showed the highest tensile strength, 610 MPa, due to solid solution hardening in the interlayers. The samples did not break when applying bending load, which is the evidence of the good reliability and durability of the composites.

Keywords


spark plasma sintering; structure; properties; nickel aluminide; laminated composites; XRD; EDX

Full Text:

PDF

References


Denisov I, Shakhray D, Malakhov A, Seropyan S. Combustion synthesis of metal-intermetallic-ceramic laminate AlMg6-NiAl-TiC composite. Crystals. 2022;12(12). doi:10.3390/cryst12121851

Bogdanov AI, Kulevich VP, Shmorgun VG. Microstructure evolution and growth of interfacial intermetallic compounds in NiCr/Ti alloy laminated composite after explosive welding and heat treatment. Metals (Basel). 2023;13(8). doi:10.3390/met13081417

Ye Q, Li X, Tayyebi M, Assari AH, Polkowska A, Lech S, Polkowski W, Tayebi M. Effect of heat treatment parameters on microstructure evolution, tensile strength, wear resistance, and fracture behavior of Ni–Ti multilayered composites produced by cross-accumulative roll bonding. Arch Civ Mech Eng. 2022;23(1):27. doi:10.1007/s43452-022-00557-8

Seropyan S, Saikov I, Andreev D, Saikova G, Alymov M. Reactive Ni–Al-based materials: strength and combustion behavior. Metals (Basel). 2021;11(6). doi:10.3390/met11060949

Malakhov A, Shakhray D, Denisov I, Galiev F, Seropyan S. Synthesis of NiAl intermetallic compound under shock-wave extrusion. Mater (Basel). 2022;15(17). doi:10.3390/ma15176062

Shevtsova L, Mali V, Bataev A, Anisimov A, Dudina D. Microstructure and mechanical properties of materials obtained by spark plasma sintering of Ni3Al–Ni powder mixtures. Mater Sci Eng A. 2020;773:138882. doi:10.1016/j.msea.2019.138882

Miracle DBB. The physical and mechanical properties of NiAl. Acta Metall Mater. 1993;41(3):649–684. doi:10.1016/0956-7151(93)90001-9

Simões S, Viana F, Ramos AS, Vieira MT, Vieira MF. Anisothermal solid-state reactions of Ni/Al nanometric multilayers. Intermetal. 2011;19(3):350–356. doi:10.1016/J.INTERMET.2010.10.021

Wang Y, Wang H, Liu X, Vecchio KS. Microstructure evolution in pure Ni and Invar-based Metallic-Intermetallic Laminate (MIL) composites. Mater Sci Eng A. 2017;682:454–465. doi:10.1016/j.msea.2016.11.033

Wang Y, Wang H, Liu X, Vecchio KS. Microstructure evolution in Ni and Ni-superalloy based metallic-intermetallic laminate (MIL) composites. Intermetal. 2017;87:70–80. doi:10.1016/j.intermet.2017.04.009

Srivastava VC, Singh T, Ghosh Chowdhury S, Jindal V. Microstructural characteristics of accumulative roll-bonded Ni-Al-based metal-intermetallic laminate composite. J Mater Eng Perform. 2012;21(9):1912–1918. doi:10.1007/s11665-011-0114-y

Konieczny M. Mechanical properties and deformation behavior of laminated Ni-(Ni2Al3+NiAl3) and Ni-(Ni3Al+NiAl) composites. Mater Sci Eng A. 2013;586:11–18. doi:10.1016/j.msea.2013.08.002

Kwiecien I, Bobrowski P, Wierzbicka-Miernik A, Litynska-Dobrzynska L, Wojewoda-Budka J. Growth Kinetics of the Selected Intermetallic Phases in Ni/Al/Ni System with various nickel substrate microstructure. Nanomater. 2019;9(2). doi:10.3390/nano9020134

Ji C, He Y, Wang CT, He Y, Pan X, Jiao J, Guo L. Investigation on shock-induced reaction characteristics of an Al/Ni composite processed via accumulative roll-bonding. Mater Des. 2017;116:591–598. doi:10.1016/j.matdes.2016.12.002

Battezzati L, Pappalepore P, Durbiano F, Gallino I. Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing. Acta Mater. 1999;47(6):1901–1914. doi:10.1016/S1359-6454(99)00040-3

Kwiecien I, Bobrowski P, Janusz-Skuza M, Wierzbicka-Miernik A, Tarasek A, Szulc Z, Wojewoda-Budka J. Interface characterization of Ni/Al bimetallic explosively welded plate manufactured with application of exceptionally high detonation speed. J Mater Eng Perform. 2020;29(10):6286–6294. doi:10.1007/s11665-020-05117-w

Kwiecien I, Wierzbicka-Miernik A, Szczerba M, Bobrowski P, Szulc Z, Wojewoda-Budka J. On the dsintegration of A1050/Ni201 explosively welded clads induced by long-term annealing. Mater (Basel). 2021;14(11). doi:10.3390/ma14112931

Bataev IA, Ogneva TS, Bataev AA, Mali VI, Esikov MA, Lazurenko D V, Guo Y, Jorge Junior AM. Explosively welded multilayer Ni–Al composites. Mater Des. 2015;88:1082–1087. doi:10.1016/j.matdes.2015.09.103

Guo X, Ma Y, Jin K, Wang H, Tao J, Fan M. Effect of stand-off distance on the microstructure and mechanical properties of Ni/Al/Ni laminates prepared by explosive bonding. J Mater Eng Perform. 2017;26(9):4235–4244. doi:10.1007/s11665-017-2890-5

Fan GH, Wang QW, Du Y, Geng L, Hu W, Zhang X, Huang YD. Producing laminated NiAl with bimodal distribution of grain size by solid–liquid reaction treatment. Mater Sci Eng A. 2014;590:318–322. doi:10.1016/j.msea.2013.10.038

Kim HY, Chung DS, Enoki M, Hong SH. Tensile and fracture properties of NiAl/Ni micro-laminated composites prepared by reaction synthesis. J Mater Res. 2006;21(5):1141–1149. doi:10.1557/jmr.2006.0154

Xia Z, Liu J, Zhu S, Zhao Y. Fabrication of laminated metal–intermetallic composites by interlayer in-situ reaction. J Mater Sci. 1999;34(15):3731–3735. doi:10.1023/A:1004624012683

Wang H, Han J, Du S, Northwood DO. Reaction synthesis of nickel/aluminide multilayer composites using Ni and Al foils: microstructures, tensile properties, and deformation behavior. Metall Mater Trans A. 2007;38(2):409–419. doi:10.1007/s11661-006-9066-5

Kim HY, Chung DS, Hong SH. Reaction synthesis and microstructures of NiAl/Ni micro-laminated composites. Mater Sci Eng A. 2005;396(1):376–384. doi:10.1016/j.msea.2005.01.044

Hulbert DM, Jiang D, Dudina D V, Mukherjee AK. The synthesis and consolidation of hard materials by spark plasma sintering. Int J Refract Met Hard Mater. 2009;27(2):367–375. doi:10.1016/j.ijrmhm.2008.09.011

Vidyuk TM, Dudina D V, Korchagin MA, Gavrilov AI, Skripkina TS, Ukhina A V, Anisimov AG, Bokhonov BB. Melting at the inter-particle contacts during Spark Plasma Sintering: Direct microstructural evidence and relation to particle morphology. Vacuum. 2020;181:109566. doi:10.1016/j.vacuum.2020.109566

Dudina D V, Kvashnin VI, Bokhonov BB, Legan MA, Novoselov AN, Bespalko YN, Jorge AM, Koga GY, Ukhina A V, Shtertser AA, Anisimov AG, Georgarakis K. Metallic iron or a Fe-based glassy alloy to reinforce aluminum: reactions at the interface during spark plasma sintering and mechanical properties of the composites. J Compos Sci. 2023;7(7). doi:10.3390/jcs7070302

Hu Z-Y, Zhang Z-H, Cheng X-W, Wang F-C, Zhang Y-F, Li S-L. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications. Mater Des. 2020;191:108662. doi:10.1016/j.matdes.2020.108662

Ogneva TS, Bataev IA, Mali VI, Anisimov AG, Lazurenko D V, Popelyukh AI, Emurlaeva YY, Bataev AA, Tanaka S, Yegoshin KD. Effect of sintering pressure and temperature on structure and properties of NiAl metal-intermetallic composites produced by SPS. Mater Charact. 2021;180:111415. doi:10.1016/j.matchar.2021.111415

Mizuuchi K, Inoue K, Sugioka M, Itami M, Lee J, Kawahara M. Properties of Ni-aluminides-reinforced Ni-matrix laminates synthesized by pulsed-current hot pressing (PCHP). Mater Sci Eng A. 2006;428(1):169–174. doi:10.1016/j.msea.2006.04.113

Kim HY, Chung DS, Hong SH. Intermixing criteria for reaction synthesis of Ni/Al multilayered microfoils. Scr Mater. 2006;54(9):1715–1719. doi:10.1016/j.scriptamat.2005.12.032




DOI: https://doi.org/10.15826/chimtech.2023.10.3.14

Copyright (c) 2023 Tatiana Ogneva, Alexander Anisimov, Ruslan Kuzmin, Andrey Tyurin, Yulia Emurlaeva, Natalya Aleksandrova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice