Cover Image

Facile synthesis of lanthanum-doped SrTiO3 nanocubes mediated by cetyltrimethylammonium bromide and tert-butylamine under solvothermal condition and their tunable electrical properties

Yulia Eka Putri, Humaira Faradilla, Dedi Satria, Diana Vanda Wellia

Abstract


The electrical conductivity of low concentrations of lanthanum-doped SrTiO3 nanocube ceramics synthesized using the facile solvothermal method in mixed organic and inorganic solvents with cetyltrimethylammonium bromide (CTAB) as a capping agent and tert-butyl amine (TBA) as a mineralizer was investigated. X-ray diffraction patterns confirmed the formation of a high-purity perovskite phase, corresponding to the standard data and the pattern refinement results. The particles of the sample were nanocubes, whereas the La-doped SrTiO3 sample particles were more uniform in size and shape, as shown in TEM images. The FT-IR spectrum confirmed the vibration of the CH3-N+ groups from CTAB and TBA, indicating an electrostatic interaction between their functional groups and the particle surface. Substitution of La3+ ions at low concentrations increased electrical conductivity compared to the undoped SrTiO3 sample. Lanthanum donates excess electrons, thereby increasing the number of electron carriers, which causes a reduction in the band gap energy according to the UV-DRS spectrum analysis using the Tauc equation.


Keywords


strontium titanate; perovskite; doping; lanthanum; electrical conductivity

Full Text:

PDF

References


Putri YE, Said SM, Diantoro M. Nanoarchitectured titanium complexes for thermal mitigation in thermoelectric materials. Renewable Sustain Energy Reviews. 2019;101:346–360. doi:10.1016/j.rser.2018.10.006

Li J, Wu Q, Wu J. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. Handbook of Nanoparticles. Oak Ridge: Springer International Publishing; 2015. 1–28 p. doi:10.1007/978-3-319-13188-7_17-1

Liu J, Nie Y, Xue W, Wu L, Jin H, Jin G, et al. Size effects on structural and optical properties of tin oxide quantum dots with enhanced quantum confinement. J Mater Res Technol. 2020;9(4):8020–8028. doi:10.1016/j.jmrt.2020.05.041

Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, Wang D, et al. New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19:1043–1053. doi:10.1002/adma.200600527

Assirey EAR. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceut J. 2019;27:817–829. doi:10.1016/j.jsps.2019.05.003

Amalraj AJJ, Wang SF. Synthesis of transition metal titanium oxide (MTiOx, M = Mn, Fe, Cu) and its application in furazolidone electrochemical sensor. J Ind Engin Chem. 2022;111:356–368. doi:10.1016/j.jiec.2022.04.018

Zhang B, Ru Q, Liu L, Wang J, Zhang Y, Zhao K, et al. Overcoming energy mismatch of metal oxide semiconductor catalysts for CO2 reduction with triboelectric plasma. J Catal. 2023;419:1–8. doi:10.1016/j.jcat.2023.01.031

Xu S, Wang Q, Fan Z, Wang H, Liu G, Cui S. Analysis of fluorescence properties of novel Eu3+-doped ZnAl2O4-based ceramic aerogels for high-power optical device applications. J Eur Ceram Soc. 2023;43:6337–6348. doi:10.1016/j.jeurceramsoc.2023.06.004

Fayaz U, Manzoor S, Dar AH, Dash KK, Bashir I, Pandey VK, et al. Advances of nanofluid in food processing: Preparation, thermophysical properties, and applications. Food Res Int. 2023;170:112954. doi:10.1016/j.foodres.2023.112954

Selvaraj P, Roy A, Ullah H, Devi PS, Tahir AA, Mallick TK, et al. Soft-template synthesis of high surface area mesoporous titanium dioxide for dye-sensitized solar cells. Int J Energy Res. 2018;1–12. doi:10.1002/er.4288

Zavjalov A, Tikhonov S, Kosyanov D. TiO2-SrTiO3 biphase nanoceramics as advanced thermoelectric materials. Mater. 2019;12:2895. doi:10.3390/ma12182895

Ibrahim IR, Matori KA, Ismail I, Rusly SNA, Nazlan R, Yusof NH, et al. Influence of nanometric microstructural development on thermophysical properties of lanthanum-doped strontium titanate. Mater Chem Phys. 2021;270:124867. doi:10.1016/j.matchemphys.2021.124867

Yeandel SR, Molinari M, Parker S. Nanostructuring perovskite oxides: The impact of SrTiO3 nanocube 3D self-assembly on thermal conductivity. RSC Adv. 2016;6:114069–11477. doi:10.1039/C6RA23887D

Azevedo SA, Laranjeira JAS, Ururi JLP, Longo E, Sambrano JR. An accurate computational model to study the Ag-doping effect on SrTiO3. Comput Mat Sci. 2022;214:111693. doi:10.1016/j.commatsci.2022.111693

Benthem K Van, Elsässer C, French RH. Bulk electronic structure of SrTiO3: Experiment and theory. J Appl Phys. 2001;90(12):6156–6164. doi:10.1063/1.1415766

Nunocha P, Bongkarn T, Harnwunggmoung D, Tanusilp S, Suriwong T. Thermoelectric properties of La-doped A-site SrTiO3 ceramics synthesised by the sol-gel auto-combustion technique. Mater Res Innovat. 2023;1–10. doi:10.1080/14328917.2023.2196479

Nunocha P, Kaewpanha M, Bongkarn T, Eiad-Ua A, Suriwong T. Effect of Nb doping on the structural, optical, and photocatalytic properties of SrTiO3 nanopowder synthesized by sol-gel auto combustion technique. J Asian Ceram Soc. 2022;10(3):583–596. doi:10.1080/21870764.2022.2094556

Maity S, Kulsi C, Banerjee S, Das S, Chatterjee K. Dependence of thermoelectric power and electrical conductivity on structural order of PEDOT-Tos-graphene nanocomposite via charge carrier mobility. Mater Res Express. 2019;6:105095. doi:10.1088/2053-1591/ab3e7c

Zhang Y, Zhong L, Duan D. A single-step direct hydrothermal synthesis of SrTiO3 nanoparticles from crystalline P25 TiO2 powders. J Mater Sci. 2016;51:1142–1152. doi:10.1007/s10853-015-9445-7

Putri YE, Wendari TP, Rahmah AA, Refinel R, Said SM, Sofyan N, et al. Tuning the morphology of SrTiO3 nanocubes and their enhanced electrical conductivity. Ceram Int. 2022;48:5321–5326. doi:10.1016/j.ceramint.2021.11.075

Dang F, Wan C, Park NH, Tsuruta K, Seo WS, Koumoto K. Thermoelectric Performance of SrTiO3 Enhanced by Nanostructuring - Self-Assembled Particulate Film of Nanocubes. ACS Appl Mater Interfaces. 2013;5:10933–10937. doi:10.1021/am403112n

Park NH, Dang F, Wan C, Seo WS, Koumoto K. Self-originating two-step synthesis of core-shell structured La-doped SrTiO3 nanocubes. J Asian Ceram Soc. 2013;1:35–40. doi:10.1016/j.jascer.2013.02.004

Knauss KG, Dibley MJ, Bourcier WL, Shaw HF. Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300°C. Appl Geochem. 2001;16:1115–1128. doi:10.1016/S0883-2927(00)00081-0

Rizwan M, Usman Z, Shakil M, Gillani SSA, Azeem S, Jin HB, et al. Electronic and optical behaviour of lanthanum doped CaTiO3 perovskite. Mater Res Express. 2020;7:15920. doi:10.1088/2053-1591/ab6802

Chen KY, Chen YW. Preparation of barium titanate ultrafine particles from rutile titania by a hydrothermal conversion. Powder Technol. 2004;141:69–74. doi:10.1016/j.powtec.2004.03.002

Ma Q, Mimura KI, Kato K. Diversity in size of barium titanate nanocubes synthesized by a hydrothermal method using an aqueous Ti compound. CrystEngComm. 2014;16:8398–8405. doi:10.1039/c4ce01195c

Putri YE, Andriani N, Wendari TP, Said SM, Wellia DV, Refinel, et al. Tunable morphology of strontium titanate nanocubes controlled by tertbutylamine-assisted solvothermal method and their enhanced electrical conductivity. Ceram Int. 2022;49(6):9909–9915. doi:10.1016/j.ceramint.2022.11.166

Jha K, Bhattarai A, Chatterjee SK. Surface Tension Studies on the Micellization of Cetyltrimethylammonium Bromide in Presence and Absence of KCl and NaCl in Aqueous Media at Room Temperature. Bibechana. 2014;10:52–57. doi:10.3126/bibechana.v10i0.9311

Yang D, Zou X, Sun Y, Tong Z, Jiang Z. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction. Front Chem Sci Eng. 2018;12:440–449. doi:10.1007/s11705-018-1700-4

Doak J, Gupta RK, Manivannan K, Ghosh K, Kahol PK. Effect of particle size distributions on absorbance spectra of gold nanoparticles. Physica E. 2010;42(5):1605–1609. doi:10.1016/j.physe.2010.01.004

Nunocha P, Kaewpanha M, Bongkarn T, Phuruangrat A. A new route to synthesizing La-doped SrTiO3 nanoparticles using the sol-gel auto combustion method and their characterization and photocatalytic application. Mater Sci Semiconductor Process. 2021;134:106001. doi:10.1016/j.mssp.2021.106001

Tong Y, Gao P, Xu J, Liu S, Yang Y, Wang Y, et al. Cobalt doped nitrogen-vacancies-rich C3N5 with optimizing local electron distribution boosts peroxymonsulfate activation for tetracycline degradation: Multiple electron transfer mechanisms. Chemosphere. 2023;339:139549. doi:10.1016/j.chemosphere.2023.139549

Anjum S, Ilayas T, Mustafa Z. Influence of antimony substitution on structural, magnetic and optical properties of cadmium spinel ferrite. Appl Phys A. 2020;126:227. doi:10.1007/s00339-020-3407-x

Łącz A, Drożdż E. Porous Y and Cr–doped SrTiO3 materials—electrical and redox properties. J Solid State Electrochem. 2019;23:2989–2997. doi:10.1016/j.physe.2010.01.004




DOI: https://doi.org/10.15826/chimtech.2023.10.4.07

Copyright (c) 2023 Yulia Eka Putri, Humaira Faradilla, Dedi Satria, Diana Vanda Wellia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice