Cover Image

Anode process on platinum in CaCl2-CaO-based melt

K. V. Tatarenko, A. V. Suzdaltsev, A. P. Khramov, Yu. P. Zaikov

Abstract


Methods potentiostatic polarization and cyclic voltammetry obtained new data on the mechanism and kinetics of anodic processes on platinum in the molten CaCl2-KCl-CaO when 725–775 °C. Given thermodynamic values of potential difference probable total reactions in the range of the studied temperature. Using potentiostatic polarization and cyclic voltammetry obtained new data on the mechanism and kinetics of anodic process on platinum in the molten CaCl2-KCl-CaO when 725–775 °C thermodynamic assessment of the probability of occurrence total reactions during electrolysis melt on the basis of CaCl2-CaO using non-carbon anode. It is shown that at high current densities anodic process takes place mainly in the conditions of slow diffusion of electrically active particles to the anode, and at low densities (up to 10 mA/cm2) to their discharge to the atomic and lecular oxygen is preceded by a stage, which can be associated with adsorption of atoms of oxygen or with the formation of an oxide film on the surface of platinum. To detect the nature of this stage, further research is needed.

Keywords


anodic process on platinum; oxide film; electrolysis; voltammetry; adsorption of oxygen

References


Chen GZ, Fray DJ. Understanding the electro-reduction of metal oxides in molten salts. In: TMS Light Metals 2004 - Proceedings of the Technical Sessions; 2004 March 14-18; United States, Carlotte, NC. p. 881-6.

Wang, D, Jin, X, Chen, GZ. Solid state reactions: An electrochemical approach in molten salts. Annu Rep Prog Chem, Sect C: Phys Chem. doi:10.1039/b703904m

Kondo H, Asaki Z, Kondo Y. Hydrolysis of fused calcium chloride at high temperature. Metall Trans B. 1978;9(4):477-83. doi:10.1007/BF02654424

Yin H, Gao L, Zhu H, Mao X, Gan F, Wang D. On the development of metallic inert anode for molten CaCl2-CaO System. Electrochim Acta. 2011;56:3296-302. doi:10.1016/j.electacta.2011.01.026

Jiao Sh, Fray DJ. Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts. Metall Mater Trans B. 2010;41(1):74-9. doi:10.1007/s11663-009-9281-8

Dubtsev AB, Zaikov YuP, Batukhina VP, Ivanovsky LE. [Behaviour of the oxide anodes at the electrolysis chloride-oxide melts. 1. Interaction oxide electrodes with melt]. Rasplavy [Melts]. 1992;1:35-40. Russian.

Glushko VP. Termodinamicheskiye konstanty individual'nykh veshchestv: spravochnik [Thermodynamic constants of individual substances: a Handbook]. Moscow: Nauka; 1978-1982. 4 vol. Russian.

Rusinov LP, Gulyanitsky BS. Ravnovesnyye prevrashcheniya metallurgicheskikh reaktsiy [Equilibrium transformations of metallurgical reactions]. Moscow: Metallurgy; 1975. 416 p. Russian.

Vatolin NA, Sotnikov AI, Vatolina ND. Okislitel'no-vosstanovitel'nyye protsessy s uchastiyem ionov zheleza i kisloroda na granitse metalla s oksidnym rasplavom [Redox processes with participation of iron ions and oxygen on the boundary of metal-oxide melt]. Ekaterinburg: UrO RAN, USTU-UPI; 2008. 232 p. Russian.

Dewing EW, van der Kouwe ETh. Anodic phenomena in cryolite-alumina melts. J Electrochem Soc. 1977;124(1):58-64. doi:10.1149/1.2133245

Seriani N, Pompe W, Ciacchi LC. Catalytic oxidation activity of Pt3O4 surfaces and thin films. J Phys Chem B. 2006;110(30):14860-9. doi:10.1021/jp063281r

Scholz F. Electroanalytical Methods. Berlin: Springer-Verlag; 2010. 359 p. doi:10.1007/978-3-642-02915-8

Bard AJ, Faulkner LR. Electochemical Methods: Fundamentals and Applications. 2nd ed. New York: John Wiley and Sons Inc; 2001. 864 p.




DOI: https://doi.org/10.15826/chimtech.2014.1.3.717

Copyright (c) 2014 K. V. Tatarenko, A. V. Suzdaltsev, A. P. Khramov, Yu. P. Zaikov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice