Cover Image

Anodic dissolution of gallium in alkali metal chloride melts

Oleg V. Tokarev, Vladimir A. Volkovich

Abstract


Gallium and gallium based alloys can be potentially used in pyrochemical and pyroelectrochemical reprocessing of spent nuclear fuels, particularly for separating actinides and rare earth fission products. However, the electrochemical behavior of gallium in high temperature molten salt electrolytes is very little studied. The present work was aimed at investigating the processes taking place during anodic dissolution of gallium in fused alkali chlorides (the ternary 6NaCl–9KCl–5CsCl eutectic mixture) and determining the ratio of gallium chloro-species in different oxidation states formed and remained in the melt. The experiments were performed between 550 and 750 °C, and the anodic current density varied from 0.024 to 0.094 A/cm2. Anodic polarization and coulometry were used, and the results obtained demonstrated that two gallium species, Ga(I) and Ga(III), were formed as a result of gallium anodic dissolution. The ratio between these two oxidation states depended on temperature and anodic current density. The method of processing the experimental data and the calculated values of the ratio of gallium ionic forms in the system under various conditions are presented.

Keywords


anodic dissolution; gallium; chloride melts; gallium chlorides; anodic polarization

Full Text:

PDF

References


Wilson PD. The nuclear fuel cycle: from ore to wastes. Oxford University Press: Oxford; 1996. 323 p. doi:10.1093/oso/9780198565406.001.0001

Nawada HP, Fukuda K. Role of pyrochemical processes in advanced fuel cycles. J Phys Chem Solids. 2005;66:647. doi:10.1016/j.jpcs.2004.07.022

Mendes E, Conocar O, Laplace A, Douyere N, Miguirditchian M. Study of innovative chemical processes for sodium fast reactor fuel assemblies cleaning. Procedia Chem. 2012;7:791. doi:10.1016/j.proche.2012.10.120

Mirza M, Abdulaziz R, Maskell WC, Wilcock S, Jones AH, Woodall S, Jackson A, Shearing PR, Brett DJL. Electrochemical processing in molten salts – a nuclear perspective. Energy Environ Sci. 2023;16:952. doi:10.1039/d2ee02010f

Ignatiev V, Feynberg O, Gnidoi I, Konakov S, Kormilitsyn M, Merzliakov A, Surenkov A, Uglov V, Zagnitko A. MARS: Story on molten salt actinide recycler and transmuter development by Rosatom in co-operation with Euratom in Actinide and Fission Product Partitioning and Transmutation. Thirteenth Information Exchange Meeting, Nuclear Science NEA/NSC/R. 2015;2:92–103.

Allibert M, Delpech S, Gerardin D, Heuer D, Laureau A, Merlea E. Homogeneous molten salt reactors (MSRs): The molten salt fast reactor (MSFR) concept. Handbook of Generation IV Nuclear Reactors: Pioro IL. Woodhead Publishing: Sawston; 2016. 231–257 pp. doi:10.1016/B978-0-12-820588-4.00005-0

Serp J, Allibert M, Benes O, Delpech S, Feynberg O, Ghetta V, Heuer D, Holcomb D, Ignatiev V, Kloosterman JL, Luzzi L, Merle-Lucotte E, Uhlír J, Yoshioka R, Zhimin D. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog Nucl Energy. 2014;77:308. doi:10.1016/j.pnucene.2014.02.014

Bychkov AV, Skiba OV. Review of non-aqueous nuclear fuel reprocessing and separation methods. Chem Sep Technol Related Meth Nuclear Waste Manag. 1999:71–98. doi:10.1007/978-94-011-4546-6_5

Inoue T, Sakamura Y. Pyrochemistry in nuclear industry. Molten Salts Fundamen Appl. 2002:249–261. doi:10.1007/978-94-010-0458-9_9

Jiang D, Zhang D, Li X, Wang S, Wang C, Qin H, Guo Y, Tian W, Su GH, Qiu S. Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook. Renewable Sustain Energy Rev. 2022;161. doi:10.1016/j.rser.2022.112345

Morgan LG, Burger LL, Scheele RD. Molten salt oxidation-reduction processes for fuel processing. Actinide Separat ACS Symposium Ser. 1979;117:233–252. doi:10.1021/bk-1980-0117.ch017

Brambilla G, Facchini AG. U-Pu recovery by molten alkaline sulphates. Radiochim Acta. 1984;36:37. doi:10.1524/ract.1984.36.12.37

Griffiths TR, Volkovich VA, Yakimov SM, May I, Sharrad CA, Charnock JM. Reprocessing spent nuclear fuel using molten carbonates and subsequent precipitation of rare earth fission products using phosphate. J Alloys Comp. 2006;418:116–121. doi:10.1016/j.jallcom.2005.10.060

Volkovich, VA, Maltsev DS, Raguzina EV, Dedyukhin AS, Shchetinskiy AV, Yamshchikov LF, Chukin AV. Thermodynamics of rare earth elements and uranium in gallium based quaternary metallic alloys. J Alloys Compd. 2019;787:367–378. doi:10.1016/j.jallcom.2019.02.081

Xu H, Zhang W, Wang C, Yang M, Yan T, Yan Y, Zhang M. Molten salt/liquid metal extraction: electrochemical behaviors and thermodynamics properties of La, Pr, U and separation factors of La/U and Pr/U couples in liquid gallium cathode. Appl Radiat Isot. 2022;182. doi:10.1016/j.apradiso.2022.110149

Liu K, Chai ZF, Shi WQ. Liquid electrodes for An/Ln separation in pyroprocessing. J Electrochem Soc. 2021;168. doi:10.1149/1945-7111/abec99

Volkovich VA, Maltsev DS, Melchakov SY, Yamshchikov LF, Novoselova AV, Smolensky VV. Separation of lanthanides and actinides in a chloride melt – liquid metal system: the effect of phase composition. ECS Trans. 2016;75:397–408. doi:10.1149/07515.0397ecst

Dedyukhin AS, Shchetinskiy AV, Kharina EA, Shchepin IE, Volkovich VA, Yamshchikov LF, Osipenko AG. Electrochemical and thermodynamic properties of lanthanum in a chloride melt – liquid metal system. ECS Trans. 2016;75:265–274. doi:10.1149/07515.0265ecst

Smolenski V, Novoselova A, Osipenko A, Maershin A. Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system. Electrochim Acta. 2014;145:81–85. doi:10.1016/j.electacta.2014.08.081

Smolenski V, Novoselova A, Volkovich VA. Thermodynamics of La and U and the Separation Factor of U/La in Fused Me(Ga-40 wt.% In)/3LiCl–2KCl System. J Nucl Mater. 2017;495:285–290. doi:10.1016/j.jnucmat.2017.08.017

Novoselova A, Smolenski V, Volkovich VA, Luk’yanova Y. Thermodynamic Properties of Ternary Me-Ga-In (Me = La, U) Alloys in a Fused Ga-In/LiCl-KCl System. J Chem Thermodyn. 2019;130:228–234. doi:10.1016/j.jct.2018.10.014

Novoselova A, Smolenski V, Volkovich VA, Ivanov AB, Osipenko A, Griffiths TR. Thermodynamic properties of La–Ga–Al and U–Ga–Al Alloys and the separation Factor of U/La couple in the molten salt–liquid metal system. J Nucl Mater. 2015;466:373–378. doi:10.1016/j.jnucmat.2015.08.010

Dedyukhin AS, Kharina EA, Raguzina EV, Maltsev DS, Shchetinskiy AV, Volkovich VA, Yamshchikov LF. Solubility of lanthanum and uranium in Ga–In and Ga–Al eutectic based alloys. AIP Conf Proc. 2018;2015:020019. doi:10.1063/1.5055092

Volkovich VA, Maltsev DS, Yamshchikov LF, Osipenko AG. Thermodynamic properties of uranium in liquid gallium, indium and their alloys. J Nucl Mater. 2015;464:263–269. doi:10.1016/j.jnucmat.2015.04.054

Dedyukhin AS, Shchetinskiy AV, Volkovich VA, Yamshchikov LF, Osipenko AG. Lanthanum activity, activity coefficients and solubility in gallium-indium liquid alloys. ECS Trans. 2014;64:227–234. doi:10.1149/06404.0227ecst

Shchetinskiy AV, Dedyukhin AS, Volkovich VA, Yamshchikov LF, Maisheva AI, Osipenko AG, Kormilitsyn MV. Thermodynamic properties of lanthanum in gallium–indium eutectic based alloys. J Nucl Mater. 2013;435:202–206. doi:10.1016/j.jnucmat.2012.12.035

Dedyukhin AS, Shepin IE, Kharina EA, Shchetinskiy AV, Volkovich VA, Yamshchikov LF. Thermodynamic properties of lanthanum in gallium–zinc alloys. AIP Conf Proceed. 2016;1767:020006. doi:10.1063/1.4962590

Novoselova A, Smolenski V. The influence of the temperature and Ga-In alloy composition on the separation of uranium from neodymium in molten Ga-In/3LiCl-2KCl system during the recycling of high-level waste. J Nucl Mater. 2018;509:313–317. doi:10.1016/j.jnucmat.2018.06.040

Smolenski V, Novoselova A, Osipenko A, Kormilitsyn M, Luk’Yanova Y. Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases. Electrochim Acta. 2014;133:354–358. doi:10.1016/j.electacta.2014.04.042

Smolenski V, Novoselova A, Volkovich V, Luk’yanova Y, Osipenko A, Bychkov A, Griffiths TR. The effect of Al concentration on thermodynamic properties of Nd and U in Ga–Al-based alloys and the separation factor of Nd/U couple in a “molten salt-liquid metal system”. J Radioanal Nucl Chem. 2017;311:687–693. doi:10.1007/s10967-016-5053-5

Schetinskiy AV, Dedyukhin AS, Kharina EA, Volkovich VA, Yamshchikov LF. Activity coefficients of lanthanum in gallium and gallium-aluminum based alloys. J Alloys Compd. 2019;790:809–813. doi:10.1016/j.jallcom.2019.03.199

Boudraa S, Djaballah Y, Mansouri Y, Belgacem Bouzida A. Thermodynamic assessment of the Ga–La and Ga–Pr systems supported by ab-initio calculations. Calphad. 2022;76:102387. doi:10.1016/j.calphad.2021.102387

Smolenski VV, Novoselova AV, Bovet AL, Mushnikov PN. Separation factors of La/U, Pr/U, and Nd/U in the Ga–In/3LiCl–2KCl molten system. Russ Metall. 2020;2020:112–114. doi:10.1134/S0036029520020135

Liu K, Liu YL, Chai ZF, Shi WQ. Electroseparation of uranium from lanthanides (La, Ce, Pr, Nd and Sm) on liquid gallium electrode. Sep Purif Technol. 2021;265:118524. doi:10.1016/j.seppur.2021.118524

Usov PM, Saltykova EA. Termodinamika obrazovaniya hloridov galliya v rasplave. [Thermodynamics of the formation of gallium chlorides in the melt.] Rasplavy. 1987;1(3):110–113.

Tokarev OV, Volkovich VA, Ryzhov AA, Maltsev DS. Electrode potentials of gallium in fused alkali chlorides. ECS Trans. 2022;109(14):197–204. doi:10.1149/10914.0197ecst

Tokarev OV, Maltsev DS, Volkovich VA. Electrochemical properties of gallium in molten alkali metal chlorides. AIP Conf Proc. 2020;2313:020005. doi:10.1063/5.0032401




DOI: https://doi.org/10.15826/chimtech.2023.10.4.16

Copyright (c) 2023 Oleg V. Tokarev, Vladimir A. Volkovich

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice