Cover Image

Chemical stability aspects of BaCe0.7–xFexZr0.2Y0.1O3–δ mixed ionic-electronic conductors as promising electrodes for protonic ceramic fuel cells

Liana Tarutina, Inna Starostina, Gennady Vdovin, Svetlana Pershina, Emma Vovkotrub, Anna Murashkina

Abstract


Mixed ion-electron conductors (MIECs) are promising materials for air electrodes for protonic ceramic fuel cells (PCFCs) or oxygen permeation membranes. In this work, various aspects of the chemical stability of Co-free MIEC materials, BaCe0.7–xFexZr0.2Y0.1O3–δ, were studied, including their interaction with another functional material (BaCe0.5Zr0.3Y0.1Yb0.1O3–δ-based proton-conducting electrolyte) and gas components (H2O, CO2, and H2). Chemical compatibility studies indicate no visible chemical interaction between the electrode and electrolyte materials even at 1200 °C, which is significantly higher than the operating temperatures (600–800 °C) of PCFCs. The treatments of BaCe0.7–xFexZr0.2Y0.1O3–δ in different atmospheres at 1100 °C, according to the XRD, SEM, IR and Raman spectroscopy data, resulted in the formation of impurity phases. However, their extremely small amounts suggest that they may not form at the operating temperatures. Thus, it can be assumed that the studied materials can be good candidates for various electrochemical applications.

Keywords


mixed ion-electron conductors; protonic ceramic fuel cells; chemical stability; barium ferrite; chemical interaction; crystal structure

Full Text:

PDF

References


Zainon AN, Somalu MR, Kamarul Bahrain AM, Muchtar A, Baharuddin NA, et al. Challenges in using perovskite-based anode materials for solid oxide fuel cells with various fuels: a review. Int J Hydrogen Energy. 2023;48:20441–20464. doi:10.1016/j.ijhydene.2022.12.192

Su H, Hu YH. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels. Chem Eng J. 2020;402:126235. doi:10.1016/j.cej.2020.126235

Liu Y, Shao Z, Mori T, Jiang SP. Development of nickel-based cermet anode materials in solid oxide fuel cells – Now and future. Mater Rep Energy. 2021;1:100003. doi:10.1016/j.matre.2020.11.002

Singh M, Zappa D, Comini E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int J Hydro-gen Energy. 2021;46:27643–74. doi:10.1016/j.ijhydene.2021.06.020

Hossain MK, Chanda R, El-Denglawey A, Emrose T, Rahman MT, Biswas MC, et al. Recent progress in barium zirconate proton conductors for electrochemical hydrogen device ap-plications: A review. Ceram Int. 2021;47:23725–23748. doi:10.1016/j.ceramint.2021.05.167

Nur Syafkeena MA, Zainor ML, Hassan OH, Baharuddin NA, Othman MHD, Tseng C-J, et al. Review on the preparation of electrolyte thin films based on cerate-zirconate oxides for electrochemical analysis of anode-supported proton ce-ramic fuel cells. J Alloys Compd. 2022;918:165434. doi:10.1016/j.jallcom.2022.165434

Kasyanova AV, Zvonareva IA, Tarasova NA, Bi L, Medvedev DA, Shao Z. Electrolyte materials for protonic ceramic elec-trochemical cells: Main limitations and potential solutions. Mater Rep Energy. 2022:100158. doi:10.1016/j.matre.2022.100158

Zvonareva IA, Medvedev DA. Proton-conducting barium stannate for high-temperature purposes: A brief review. J Eur Ceram Soc. 2023;43:198–207. doi:10.1016/j.jeurceramsoc.2022.10.049

Wei Z, Wang J, Yu X, Li Z, Zhao Y, Chai J. Study on Ce and Y co-doped BaFeO3–δ cubic perovskite as free-cobalt cathode for proton-conducting solid oxide fuel cells. Int J Hydrogen Energy. 2021;46:23868–23878. doi:10.1016/j.ijhydene.2021.04.188

Tarutin AP, Filonova EA, Ricote S, Medvedev DA, Shao Z. Chemical design of oxygen electrodes for solid oxide elec-trochemical cells: A guide. Sustain Energy Technol Ass. 2023;57:103185. doi:10.1016/j.seta.2023.103185

Yang L, Ren X, Peng W, Wang A, Yan D, Li J, et al. Triple-conducting Zn-doped Pr1.8Ba0.2NiO4+δ air electrodes for pro-ton ceramic electrolysis cells. J Power Sources. 2023;586:233652. doi:10.1016/j.jpowsour.2023.233652

Chen L, Jing J, Lun P, Zhang P, Zheng Z, Wang H, et al. Ba0.9Co0.7Fe0.2Nb0.1O3–δ perovskite as promising cathode ma-terial for proton ceramic fuel cell. Int J Hydrogen Energy. 2023. doi:10.1016/j.ijhydene.2023.07.041

Pei Y, Wang H, Gong J, Yan Z, Xu L, Liu X, et al. Co and Hf co-doped BaFeO3 cathode with obviously enhanced catalytic activity and CO2 tolerance for solid oxide fuel cell. Int J Hy-drogen Energy. 2022;47:37945–37955. doi:10.1016/j.ijhydene.2022.08.283

Liu H, Zhu K, Liu Y, Li W, Cai L, Zhu X, et al. Structure and electrochemical properties of cobalt-free perovskite cath-ode materials for intermediate-temperature solid oxide fuel cells. Electrochim Acta. 2018;279:224–230. doi:10.1016/j.electacta.2018.05.086

Wang M, Su C, Zhu Z, Wang H, Ge L. Composite cathodes for protonic ceramic fuel cells: Rationales and materials. Com-posites Part B Eng. 2022;238:109881. doi:10.1016/j.compositesb.2022.109881

Hanif MB, Rauf S, Abadeen Z ul, Khan K, Tayyab Z, Qayyum S, et al. Proton-conducting solid oxide electrolysis cells: Re-lationship of composition-structure-property, their chal-lenges, and prospects. Matter. 2023;6:1782–1830. doi:10.1016/j.matt.2023.04.013

Yang Q, Lu J, Li C, Tian D, Ding Y, Lu X, et al. Tailoring the electrochemical reduction kinetics of dual-phase BaCe0.5Fe0.5O cathode via incorporating Mo for IT-SOFCs. J Eur Ceram Soc. 2023;43:6180–6188. doi:10.1016/j.jeurceramsoc.2023.06.006

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogeni-des. Acta Cryst A. 1976;32:751–767. doi:10.1107/S0567739476001551

Dong F, Ni M, He W, Chen Y, Yang G, Chen D, et al. An effi-cient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0.95SnO3−δ. J Power Sources. 2016;326:459–465. doi:10.1016/j.jpowsour.2016.07.023

Wang J, Lam KY, Saccoccio M, Gao Y, Chen D, Ciucci F. Ca and In co-doped BaFeO3–δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells. J Power Sources. 2016;324:224–232. doi:10.1016/j.jpowsour.2016.05.089

Cui J, Wang J, Zhang X, Li G, Wu K, Cheng Y, et al. Low thermal expansion material Bi0.5Ba0,5FeO3–δ δ in application for proton-conducting ceramic fuel cells cathode. Int J Hy-drogen Energy. 2019;44:21127–21135. doi:10.1016/j.ijhydene.2019.02.127

Raimondi G, Merkle R, Longo A, Giannici F, Mathon O, Sahle CJ, et al. Interplay of chemical, electronic, and struc-tural effects in the triple-conducting BaFeO3 –Ba(Zr,Y)O3 solid solution. Chem Mater. 2023;35: 8945–8957. doi:10.1021/acs.chemmater.3c01538

Zhu X, Wang H, Yang W. Structural stability and oxygen permeability of cerium lightly doped BaFeO3−δ ceramic membranes. Solid State Ionics. 2006;177:2917–2921. doi:10.1016/j.ssi.2006.08.027

He W, Fan J, Zhang H, Chen M, Sun Z, Ni M. Zr doped BaFeO3–δ as a robust electrode for symmetrical solid oxide fuel cells. Int J Hydrogen Energy. 2019;44:32164–32169. doi:10.1016/j.ijhydene.2019.10.091

Akbari-Fakhrabadi A, Fábrega G, Ochoa P, Meruane V, Valenzuela P, Gacitúa W. Effect of La3+ and Nb5+on struc-tural and mechanical properties of BaFeO33–δ. J Eur Ceram Soc. 2023;43:6162–6169. doi:10.1016/j.jeurceramsoc.2023.05.017

Wang Z, Wang Y, Wang J, Song Y, Robson MJ, Seong A, et al. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes. Nat Catal. 2022;5:777–787. doi:10.1038/s41929-022-00829-9

Hu H, Lu Y, Zhou X, Li J, Wang X, Ding X. A/B-site co-doping enabled fast oxygen reduction reaction and promoted CO2 tolerance of perovskite cathode for solid oxide fuel cells. J Power Sources. 2022;548:232049. doi:10.1016/j.jpowsour.2022.232049

Tarutina LR, Vdovin GK, Lyagaeva JG, Medvedev DA. BaCe0.7–xZr0.2Y0.1FexO3–δ derived from proton-conducting electrolytes: A way of designing chemically compatible cathodes for solid oxide fuel cells. J Alloys Compd. 2020;831:154895. doi:10.1016/j.jallcom.2020.154895

Tarutina LR, Kasyanova AV, Starostin GN, Vdovin GK, Medvedev DA. Electrochemical activity of original and in-filtrated Fe-doped Ba(Ce,Zr,Y)O3-based electrodes to be used for protonic ceramic fuel cells. Catalysts. 2022;12:1421. doi:10.3390/catal12111421

Tarutina LR, Vdovin GK, Lyagaeva JG, Medvedev DA. Com-prehensive analysis of oxygen transport properties of a BaFe0.7Zr0.2Y0.1O3–δ-based mixed ionic-electronic conductor. J Membr Sci. 2021;624:119125. doi:10.1016/j.memsci.2021.119125

FullProf Suite. Crystallographic tools for Rietveld, profile matching & integrated intensity refinements of X-Ray and/or neutron data [Internet]. https://www.ill.eu/sites/fullprof/, Accessed on 15 Septem-ber 2023.

Shen P, Luo J, Zuo Y, Yan Z, Zhang K. Effect of La-Ni substi-tution on structural, magnetic and microwave absorption properties of barium ferrite. Ceram Int. 2017;43:4846–4851. doi:10.1016/j.ceramint.2016.12.107

Patel CD, Dhruv PN, Meena SS, Singh C, Kavita S, Ellouze M, et al. Influence of Co4+–Ca2+ substitution on structural, microstructure, magnetic, electrical and impedance charac-teristics of M-type barium–strontium hexagonal ferrites. Ceram Int. 2020;46:24816–24830. doi:10.1016/j.ceramint.2020.05.326

Xian H, Zhang X, Li X, Zou H, Meng M, Zou Z, et al. Effect of the calcination conditions on the NOx storage behavior of the perovskite BaFeO3−x catalysts. Catal Today. 2010;158:215–219. doi:10.1016/j.cattod.2010.03.026

Zhao WY, Wei P, Wu XY, Wang W, Zhang QJ. Lattice vibra-tion characterization and magnetic properties of M-type barium hexaferrite with excessive iron. J Appl Phys. 2008;103. doi:10.1063/1.2884533

Shen P, Luo J, Zuo Y, Yan Z, Zhang K. Effect of La-Ni substi-tution on structural, magnetic and microwave absorption properties of barium ferrite. Ceram Int. 2017;43:4846–4851. doi:10.1016/j.ceramint.2016.12.107

Ahmad N, Alam M, Adil SF, Ansari AA, Assal ME, Ramay SM, et al. Synthesis, characterization, and selective benzyl al-cohol aerobic oxidation over Ni-loaded BaFeO3 mesoporous catalyst. J King Saud Univ Sci. 2020;32:2059–2068. doi:10.1016/j.jksus.2020.02.015

Thomas J, Anitha PK, Thomas T, Thomas N. BaZrO3 based non enzymatic single component single step ceramic elec-trochemical sensor for the picomolar detection of dopa-mine. Ceram Int. 2022;48:7168–7182. doi:10.1016/j.ceramint.2021.11.278

Aarthi U, Babu KS. Grain boundary space charge modula-tion in BaZr0.8Y0.2–xMxO3−δ with transition metal (M= Ni, Co, Fe, and Zn) co-doping. Int J Hydrogen Energy. 2020;45:29356–29366. doi:10.1016/j.ijhydene.2020.07.207

Charoonsuk T, Vittayakorn N. Soft-mechanochemical syn-thesis of monodispersed BaZrO3 sub-microspheres: Phase formation and growth mechanism. Mater Design. 2017;118:44–52. doi:10.1016/j.matdes.2017.01.029

Fassbender RU, de Carvalho Teixeira V, Galante D, Ferrer M, Jardim PLG, Ratmann CR, et al. Correlation between lo-cal structure and electronic properties of BaZrO3:TbYb Op-tical Ceramics. J Electron Spectrosc Relat Phenomena. 2021;251:147106. doi:10.1016/j.elspec.2021.147106

Triviño-Peláez Á, Mosa J, Pérez-Coll D, Aparicio M, Mather GC. Low-temperature sintering and enhanced stability of fluorine-modified BaZr0.8Y0.2O3–δ synthesised by a sol-gel alkoxide route. J Eur Ceram Soc. 2023;43:99–108. doi:10.1016/j.jeurceramsoc.2022.09.042




DOI: https://doi.org/10.15826/chimtech.2023.10.4.14

Copyright (c) 2023 Liana Tarutina, Inna Starostina, Gennady Vdovin, Svetlana Pershina, Emma Vovkotrub, Anna Murashkina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice