Cover Image

Conjugates of 8-[2,2’-bipyridinyl]coumarins as potential chemosensors for Al3+, Cu2+, Cd2+, Zn2+ ions: synthesis and photophysical properties

Ainur D. Sharapov, Ramil F. Fatykhov, Igor A. Khalymbadzha, Dmitry S. Kopchuk, Igor L. Nikonov, Anastasiya P. Potapova, Yaroslav K. Shtaitz, Pavel A. Slepukhin

Abstract


In this work, we report the synthesis of novel coumarin-bipyridine conjugates using a sequence of C–C coupling reaction between 5,7-dimethoxycoumarins and 3-pyridyl-6-aryl-1,2,4-triazines followed by the Boger reaction with norbornandiene to obtain 8-[2,2'-bipyridyl]-5,7-dimethoxycoumarins. Photophysical properties were investigated for the obtained series of 8-[2,2'-bipyridyl]-5,7-dimethoxycoumarins: absorption and emission wavelength maxima are in the region of 212–296 and 401–410 nm, respectively; Stokes shifts are up to 116 nm, and fluorescence quantum yields are up to 15.0%. It was found that titrating the conjugates with Al3+, Zn2+, and Cd2+ ions results in an increase in the intensity of the emission maxima of the complexes, while the opposite effect was observed in the case of titration with Cu2+ ions. These findings suggest that the studied compounds may be considered as promising chemosensing materials. Finally, a positive solvatochromism of 8-[2,2'-bipyridyl]coumarins and their metal complexes was established. The experimental data are supported by mathematical calculations according to the Lippert-Mataga equation and Kosower diagram.

Keywords


chemosensors; coumarins; 2,2’-bipyridines; photophysical properties; metal complexes

Full Text:

PDF

References


Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chemical Reviews. 2019;119(18):10403–10519. doi:10.1021/acs.chemrev.9b00145

Górski K, Deperasińska I, Baryshnikov GV, Ozaki S, Kamada K, Ågren H, Gryko DT. Quadrupolar dyes based on highly polarized coumarins. Org Lett. 2021;23(17):6770–6774. doi:10.1021/acs.orglett.1c02349

Shaydyuk YO, Bashmakova NV, Klishevich GV, Dmytruk AM, Kachkovsky OD, Kuziv IB, Dubey IY, Belfield KD, Bondar MV. Nature of linear spectral properties and fast relaxations in the excited states and two-photon absorption efficiency of 3-thiazolyl and 3-phenyltiazolyl coumarin derivatives. ACS Omega. 2023;8(12):11564–11573. doi:10.1021/acsomega.3c00654

Verma P, Pal, H. Aggregation Studies of Dipolar Coumarin-153 Dye in Polar Solvents: A Photophysical Study. J Phys Chem A. 2014;118(34):6950–6964. doi:10.1021/jp506138w

Jana K, Sarkar D, Jaiswal P, Moorthy JN. Synthesis and Excited-State Properties of Donor–Acceptor Azahelical Coumarins. J Org Chem. 2023;88(11):6611-6622. doi:10.1021/acs.joc.2c02810

Xu Z, Chen X, Kim HN, Yoon J. Sensors for the optical detection of cyanide ion. Chem Soc Rev. 2010;39:127–137. doi:10.1039/B907368J

Zhou Y, Zhang JF, Yoon J. Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem Rev. 2014;114:5511–5571. doi:10.1021/cr400352m

Kim SK, Lee DH, Hong JI, Yoon J. Chemosensors for pyrophosphate. Acc Chem Res. 2009;42:23–31. doi:10.1021/ar800003f

Wu J, Kwon B, Liu W, Anslyn EV, Wang P, Kim JS. Chromogenic/fluorogenic ensemble chemosensing systems. Chem Rev. 2015;115:7893–7843. doi:10.1021/cr500553d

Hargrove AE, Nieto S, Zhang T, Sessler JL, Anslyn EV. Artificial receptors for the recognition of phosphorylated molecules. Chem Rev. 2011;111:6603–6782. doi:10.1021/cr100242s

Shiraishi Y, Nakamura M, Hayashi N, Hirai T. Coumarin-spiropyran dyad with a hydrogenated pyran moiety for rapid, selective, and sensitive fluorometric detection of cyanide anion. Anal Chem. 2016;88:6805–6811. doi:10.1021/acs.analchem.6b01279

Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108:1517–1549. doi:10.1021/cr078203u

Verwilst P, Sunwoo K, Kim JS. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun. 2015;51:5556–5571. doi:10.1039/C4CC10366A

Chen X, Pradhan T, Wang F, Kim JS, Yoon J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev. 2012;112:1910–1956. doi:10.1021/cr200201z

Zhang JF, Zhou Y, Yoon J, Kim JS. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev. 2011;40:3416–3429. doi:10.1039/c1cs15028f

Qian X, Xu Z. Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev. 2015;44:4487–4493. doi:10.1039/C4CS00292J

Sun W, Guo S, Hu C, Fan J, Peng X. Recent development of chemosensors based on cyanine platforms. Chem Rev. 2016;116:7768–7817. doi:10.1021/acs.chemrev.6b00001

Dong B, Song X, Kong X, Wang C, Tang Y, Liu Y, Lin W. Simultaneous near-infrared and two-photon in vivo imaging of H2O2 using a ratiometric fluorescent probe based on the unique oxidative rearrangement of oxonium. Adv Mater. 2016;28:8755–8759. doi:10.1002/adma.201602939

Men Y, Li Z, Zhang J, Tong Z, Xi Z, Qiu X, Yi L. Rational design and synthesis of fast-response NBD-based fluorescent probes for biothiols. Tetrahedron Lett. 2015;56:5781–5786. doi:10.1016/j.tetlet.2015.08.073

He L, Yang X, Xu K, Yang Y, Lin W. A multifunctional logic gate by means of a triple-chromophore fluorescent biothiol probe with diverse fluorescence signal patterns. Chem Commun. 2017;53:13168–13171. doi:10.1039/C7CC07296A

Manjare ST, Kim Y, Churchill DG. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes. Acc Chem Res. 2014;47:2985–2998. doi:10.1021/ar500187v

Dong B, Zheng K, Tang Y, Lin W. Development of green to near-infrared turn-on fluorescent probes for the multicolour imaging of nitroxyl in living systems. J Mater Chem B. 2016;4:1263–1269. doi:10.1039/C5TB02073E

Zhang Q, Zhu Z, Zheng Y, Cheng J, Zhang N, Long Y-T, Zheng J, Qian X, Yang Y. A three-channel fluorescent probe that distinguishes peroxynitrite from hypochlorite. J Am Chem Soc. 2012;134:18479–18482. doi:10.1021/ja305046u

Signore G, Nifosì R, Albertazzi L, Storti B, Bizzarri R. Polarity-sensitive coumarins tailored to live cell imaging. J Am Chem Soc. 2010;132:1276–1288. doi:10.1021/ja9050444

Hirosawa S, Arai S, Takeoka S. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions. Chem Commun. 2012;48:4845–4847. doi:10.1039/c2cc30603d

Xiao-ya S, Teng L, Jie S, Xiao-jing W. Synthesis and application of coumarin fluorescence probes. RSC Adv. 2020;10:10826–10847. doi:10.1039/C9RA10290F

Li T, Fang R, Wang B, Shao Y, Liu J, Zhang S, Yang Z. A simple coumarin as a turn-on fluorescence sensor for Al(III) ions. Dalton Trans. 2014;43:2741–2743. doi:10.1039/C3DT52414K

Guha S, Lohar S, Sahana A, Banerjee A, Safin DA, Babashkina MG, Mitoraj MP, Bolte M, Garcia Y, Mukhopadhyay SK, Das D. A coumarin-based “turn-on” fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties. Dalton Trans. 2013;42:10198–10207. doi:10.1039/c3dt51045j

García-Beltrán O, Cassels BK, Mena N, Nuñez MT, Yañez O, Caballero J. A coumarinylaldoxime as a specific sensor for Cu2+ and its biological application. Tetrahedron Lett. 2014;55:873–876. doi:10.1016/j.tetlet.2013.12.033

Kumari C, Sain D, Kumar A, Debnath S, Saha P, Dey S. Intracellular detection of hazardous Cd2+ through a fluorescence imaging technique by using a nontoxic coumarin based sensor. Dalton Trans. 2017;46:2524–2531. doi:10.1039/C6DT04833A

Maity D, Govindaraju T. A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem Commun. 2012;48:1039–1041. doi:10.1039/C1CC16064

Fatykhov RF, Khalymbadzha IA, Sharapov AD, Potapova AP, Starnovskaya ES, Kopchuk DS, Chupakhin, ON. Expedient synthesis of 1,2,4-triazinyl substituted benzo[c]coumarins via double oxidation strategy. Chim Tech Acta. 2023;10(2):202310205. doi:10.15826/chimtech.2023.10.2.05

Fatykhov RF, Savchuk MI, Starnovskaya ES, Bobkina MV, Kopchuk DS, Nosova EV, Zyryanov GV, Khalymbadzha IA, Chupakhin ON, Charushin VN, Kartsev, VG. Nucleophilic substitution of hydrogen–the Boger reaction sequence as an approach towards 8-(pyridin-2-yl)coumarins. Mendeleev Commun. 2019;29(3):299–300. doi:10.1016/j.mencom.2019.05.019

Fatykhov RF, Sharapov AD, Starnovskaya ES, Shtaitz, YK, Savchuk MI, Kopchuk DS, Nikonov IL, Zyryanov GV, Khalymbadzha IA, Chupakhin ON. Coumarin-pyridine push-pull fluorophores: Synthesis and photophysical studies. Spectrochim Acta A Mol Biomol Spectros. 2022;267:120499. doi:10.1016/j.saa.2021.120499

Sharapov AD, Fatykhov RF, Khalymbadzha IA, Sharutin VV, Santra S, Zyryanov G, Chupakhin ON, Ranu BC. Mechanochemical synthesis of coumarins via Pechmann condensation under solvent-free conditions: an easy access to coumarins and annulated pyrano[2,3-f] and [3,2-f]indoles. Green Chem. 2022;4(6):2429–2437. doi:10.1039/d1gc04564d

Santra S, Sharapov AD, Fatykhov RF, Potapova AP, Khalymbadzha IA, Valieva MI, Kopchuk DS, Zyryanov GV, Bunev AS, Melekhin VV, Gaviko VS, Zonov AA. Xanthone-1,2,4-triazine and Acridone-1,2,4-triazine Conjugates: Synthesis and anticancer activity. Pharmaceut. 2023;16(3):403. doi:10.3390/ph16030403

Shabunina OV, Kopchuk DS, Ustinova MM, Kozhevnikov DN, Kozhevnikov VN, König B. Facile Synthesis Of 6-Aryl-3-Pyridyl-1,2,4-Triazines As A Key Step Toward Highly Fluorescent 5-Substituted Bipyridines And Their Zn(II) And Ru(II) Complexes. Tetrahedron. 2008;64(37):8963–8973. doi:10.1016/j.tet.2008.06.040

Lakowicz JR. Principles of Fluorescence Spectroscopy. Springer. Boston, 2006. 205–235 p. doi:10.1007/978-0-387-46312-4

Von Lippert EZ. Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Ber Bunsenges. Phys Chem. 1957;61(8):962–975. doi:10.1002/bbpc.19570610819

Mataga N, Kaifu Y, Koizumi M. Solvent effects uponfluorescence spectra and thedipolemoments of excited molecules. Bull Chem Soc Jpn. 1956;29:465–470. doi:10.1246/BCSJ.29.465

Kawski A. On the estimation of excited-state dipole moments from solvatochromicshifts of absorption andfluorescence spectra, Z. Naturforsch A. 2002;57(5):255–262. doi:10.1515/zna-2002-0509

Rabek JF. Progress in photochemistry and photophysics, vol. V. CRC Press. Boca Raton, 2016. 1–208 p.

Kopchuk DS, Chepchugov NV, Starnovskaya ES, Khasanov AF, Krinochkin AP, Santra S, Zyryanov GV, Das P, Majee A, Rusinov VL, Charushin VN. Synthesis and optical properties of new 2-(5- arylpyridine-2-yl)-6-(het)arylquinoline-based ‘‘push-pull” fluorophores. Dyes Pigm. 2019;167:151–156. doi:10.1016/j.dyepig.2019.04.029

Kosower EM. An Introduction to Physical Organic Chemistry. Wiley. New York, 1968. 293 p.

Kosower EM, The Effect of Solvent on Spectra. I. A New Empirical Measure of Solvent Polarity: Z-Values. J Am Chem Soc. 1958;80(13):3253–3260. doi:10.1021/ja01546a020

Dimroth K, Reichardt C, Siepmann T, Bohlmann F. Über Pyridinium-Nphenol-betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, Liebigs. Ann Chem. 1963;661(1):1–37. doi:10.1002/jlac.19636610102

Reichardt C. Über Pyridinium-N-phenol-betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, VI. Erweiterung der Lösungsmittelpolaritätsskala durch Bestimmung neuer molarer Übergangsenergien (ET-Werte), Liebigs. Ann Chem. 1971;752(1):64–67. doi:10.1002/jlac.19717520109

Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008;A64:112–122. doi:10.1107/S0108767307043930

CrysAlisPro, version 1.171.39.38a, Data Collection, Reduction and Correction Program, Rigaku Oxford Diffraction, 2017.

Sharapov, AD, Fatykhov, RF, Khalymbadzha, IA, Valieva, MI, Nikonov, IL, Taniya, OS, Kopchuk, DS, Zyryanov, GV, Potapova, AP, Novikov, AS, Sharutin, VV, Chupakhin, ON. Fluorescent Pyranoindole Congeners: Synthesis and Photophysical Properties of Pyrano[3,2-f], [2,3-g], [2,3-f], and [2,3-e]Indoles. Molecules. 2022;27(24):8867. doi:10.3390/molecules27248867




DOI: https://doi.org/10.15826/chimtech.2023.10.4.17

Copyright (c) 2023 Ainur D. Sharapov, Ramil F. Fatykhov, Igor A. Khalymbadzha, Dmitry S. Kopchuk, Igor L. Nikonov, Anastasiya P. Potapova, Yaroslav K. Shtaitz, Pavel A. Slepukhin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International