Cover Image

Combination of fluorescent and spin labels: a powerful method for the optimization of hydrophilic membranes for the separation of oil-in-water emulsions

Rita S. Alqubelat, Alena D. Kuznetsova, Denis O. Antonov, Maxim A. Mironov

Abstract


A new method for assessing the quality of fibre coating based on a combination of fluorescence microscopy and electron paramagnetic resonance is presented in this work. An influence of the carboxymethylcellulose/polyvinylamine gel preparation method on the mobility of the spin label was established. The mobility of the spin label changes from 3.5 ns in the case of a polyvinylamine solution to 12.8 ns in the case of a cross-linked gel on the surface of the glass fibre. A qualitative relationship was found between the mobility of the spin label in the gel applied to the glass fibre and the rate of spreading of crude oil over its surface. This method can be used to make membranes for the separation of water-in-oil emulsions.

Keywords


fluorescent label; spin label; oil-in-water emulsion; carboxymethylcellulose; polyvinylamine

Full Text:

PDF

References


Kuimov VM, Kryazhov AN, Yagupov AI, Elagin AA, Mironov MA. Biopolymer-based membranes: green technologies for the separation of oil–water mixtures and the reduction of oil pollution. Clean Techn Environ Policy. 2022;24:1961–1985. doi:10.1007/s10098-022-02306-0

Zhu Y, Wang D, Jiang L, Jin J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater. 2014;6:101–111. doi:10.1038/am.2014.23

Wang H, Hu X, Ke Z. Review: porous metal filters and membranes for oil-water separation. Nanoscale Res Lett. 2018;13:1–14. doi:10.1186/s11671-018-2693-0

Zirehpour A, Rahimpour A. Membranes for wastewater treatment. In: Nanostructured polymer membranes. vol 2. London: Wiley; 2016. pp 159–207.

Shahruddin MZ, Othman NH, Alias NH, Ghani SNA. Desali-nation of produced water using bentonite as pre-treatment and membrane separation as main treatment. Procedia. 2015;195:2094–2100. doi:10.1016/j.sbspro.2015.06.237

Zulfiqar U, Thomas AG, Matthews A, Lewis DJ. Surface en-gineering of ceramic nanomaterials for separation of oil/water mixtures. Front Chem. 2020;8:587. doi:10.3389/fchem.2020.00578

Yuan J, Cui C, Qi B. Experimental investigation of copper mesh substrate with selective wettability to separate oil/water mixture. Energies. 2019;12:1–19. doi:10.3390/en122 34564

Lin X, Hong J. Recent advances in robust superwettable membranes for oil-water separation. Adv Mater Interfaces. 2019;6:1–23. doi:10.1002/admi.201900126

Wang Y, Su Y, Wang W. The advances of polysaccharide-based aerogels: preparation and potential application. Car-bohydr Polym. 2019;226:115242. doi:10.1016/j.carbpol.2019.115242

Cheng QY, Guan CS, Li YD. Robust and durable superhydro-phobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation. Cellulose. 2019;26:2861–2872. doi:10.1007/s10570-019-02267-6

Sun S, Xiao QR, Zhou X. A bio-based environment-friendly membrane with facile preparation process for oil-water separation. Colloids Surfaces A. 2018;559:18–22. doi:10.1016/j.colsurfa.2018.09.038

Zeng M, Echols I, Wang P. Highly biocompatible, underwa-ter superhydrophilic and multifunctional biopolymer membrane for efficient oil-water separation and aqueous pollutant removal. ACS Sustain Chem Eng. 2018;6:3879–3887. doi:10.1021/acssuschemeng.7b04219

Wang Z, Ji S, Zhang J. Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and under-water superoleophobic modification of various hydrophobic membranes for oil/water separation. J Mater Chem A. 2018;6:13959–13967. doi:10.1039/c8ta03794a

Wang M, Peng M, Zhu J, Li YD, Zeng JB. Mussel-inspired chitosan modified superhydrophilic and underwater super-oleophobic cotton fabric for efficient oil/water separation. Carbohydr Polym. 2020;244:116449. doi:10.1016/j.carbpol.2020.116449

Liu Q, Patel AA, Liu L. Superhydrophilic and underwater superoleophobic poly (sulfobetaine methacrylate)-grafted glass fiber filters for oil–water separation. ACS Appl Mater Interfaces. 2014;6(12):8996–9003. doi:10.1021/am502302g

Gomes BR, Araújo R, Sousa T, Figueira RB. Sol-gel coating membranes for optical fiber sensors for concrete structures monitoring. Coatings. 2021;11(10):1245. doi:10.3390/coatings11101245

Spettmann D, Eppmann S, Flemming HC, Wingender J. Simultaneous visualisation of biofouling, organic and in-organic particle fouling on separation membranes. Water Sci Technol. 2007;55(8–9):207–210. doi:10.2166/wst.2007.260

Yuan B, Wang X, Tang C, Li X, Yu G. In situ observation of the growth of biofouling layer in osmotic membrane biore-actors by multiple fluorescence labeling and confocal laser scanning microscopy. Water Res. 2015;75:188–200. doi:10.1016/j.watres.2015.02.048

Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci. 2011;162:87–106. doi:10.1016/j.cis.2010.12.007

Barnes JP, Liang Z, Mchaourab HS, Freed JH, Hubbell WL. A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys J. 1999;76:3298–3306. doi:10.1016/S0006-3495(99)77482-5

Sahu ID, Lorigan GA. Site-Directed Spin Labeling EPR for Studying Membrane Proteins. BioMed Res Int. 2018:2018. doi:10.1155/2018/3248289

Fournier C, Leonard M, Dellacherie E, Chikhi M, Hommel H, Legrand AP. EPR spectroscopy analysis of hydrophobical-ly modified dextran-coated polystyrene. J Colloid Interface Sci. 1998;198(1):27–33. doi:10.1006/jcis.1997.5234

Touhami A, Hommel H, Legrand AP, Serres A, Muller D, Jozefonvicz J. Spin-labelling study of dextran-coated silica: effect of functionalisation. Colloids Surfaces B: Biointer-faces. 1993;1(3):189–195. doi:10.1016/0927-7765(93)80050-9

Lawrence J. Spin Labeling Theory and Applications. New York: Academic Press; 1976. 465 p.

Vorobiev AK, Bogdanov AV, Yankova TS, Chumakova NA. Spin probe determination of molecular orientation distribution and rotational mobility in liquid crystals: model-free approach. J Phys Chem B. 2019;123:5875–5891. doi:10.1021/acs.jpcb.9b05431

Krinichnyi VI. 2-Mm Wave Band EPR Spectroscopy of Con-densed Systems. Florida: CRC Press; 2018. 274 p.

Artyukh RI, Kachalova GS, Samaryanov BA, Timofeev VP. Dynamic mobility of the histidine-containing domain in spin-labeled lysozyme. Mol Biol. 1995;29(1):87–92.

Antonov DO, Chumakova NA, Kovaleva EG. Orientation of spin-labeled lysozyme from chicken egg white immobilized on porous oxide carriers. Appl Mag Resonance. 2020;51:679–690. doi:10.1007/s00723-020-01231-z

Elagin AA, Mironov MA, Ponomarev VS, authors; Npo Bio-mikrogel, assignee. Polysaccharide microgels or cleaning water of petroleum and petroleum products and method for using same (variants). European patent EP2862843 A1. 2015 Apr 22.

Elagin AA, Mironov MA, Shulepov ID, authors; Biomicrogels UK, assignee. Substance for collecting petroleum or petroleum products from surface of water and utilization method thereof. European patent EP3156470 A1. 2017 Apr 19.




DOI: https://doi.org/10.15826/chimtech.2023.10.4.15

Copyright (c) 2023 Rita S. Alqubelat, Alena D. Kuznetsova, Denis O. Antonov, Maxim A. Mironov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice