Cover Image

The transformations of thiols and their dimers in the redox-mediated thiol-disulfide exchange reaction

Daria A. Burmistrova, Ivan V. Smolyaninov, Nadezhda T. Berberova

Abstract


A search for new approaches to sulfurous waste utilization is one of the urgent tasks of chemical technology. Thiol-disulfide exchange reaction (TDE) is one of the possible ways to involve technogenic wastes in organic synthesis. Electricity can promote such type of interactions. In this paper, we have studied TDE reactions involving low molecular weight thiols or their dimers under electrochemical conditions. The exchange processes were examined using the model reaction between 1-propanethiol and phenyl disulfide. Electrolysis was performed in the presence of redox mediators such as arylphosphines, substituted amines, o-, p-aminophenols or catechol. These compounds can initiate a TDE process with a formation of unsymmetrical disulfides. 4-Amino-2,6-diphenylphenol was chosen as the most effective redox mediator, which reduces the anodic overvoltage of a thiol oxidation by 1.20 V. The advantage of electrolysis in an undivided cell is the increased yield of target unsymmetrical disulfides due to the possibility of reduction ofhomodimers at the cathode. The involvement of refining waste, such as C3–C4 disulfide oil, in the reaction with substituted thiophenols made it possible to obtain a number of unsymmetrical arylalkyl disulfides with biologically active fragments in a high yield (up to 97%) under indirect electrolysis conditions.

Keywords


industrial waste; thiols; thiol-disulfide exchange; unsymmetrical disulfides; redox-mediator; electrochemistry

Full Text:

PDF

References


Feng M, Tang B, Liang SH and Jiang X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem. 2016;16(11):1200–1216. doi:10.2174/1568026615666150915111741

Mustafa M, Winum JY. The importance of sulfur-containing motifs in drug design and discovery. Expert Opin Drug Discov. 2022;17(5):501–512. doi:10.1080/17460441.2022.2044783

Deng L, Li X, Miao K, Mao X, Han M, Li D, Mu C, Ge L. Development of disulfide bond crosslinked gelatin/ε-polylysine active edible film with antibacterial and antioxidant activities. Food Bioprocess Technol. 2020;13:577–588. doi:10.1007/s11947-020-02420-1

Miękus N, Marszałek K, Podlacha M, Iqbal A, Puchalski C, Świergiel AH. Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molec. 2020;25:3804. doi:10.3390/molecules25173804

Nghiem TT, Nguyen BL, Huyen LT, Kawahara S. A novel approach to prepare self-healing vulcanized natural rubber using tetramethylthiuram disulfide. Polym J. 2023;55:1097–1102. doi:10.1038/s41428-023-00818-0

Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, Müllen K, Feng X. Persulfurated coronene: a new generation of “sulflower”. J Am Chem Soc. 2017;139:2168−2171. doi:10.1021/jacs.6b12630

Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA. Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci. 2015;16:1791–1805. doi:10.3390/ijms16011791

Góngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem Rev. 2014;114:901−926. doi:10.1021/cr400031z

Mandal B, Basu B. Recent advances in S–S bond formation. RSC Adv. 2014;4:13854–13881. doi:10.1039/C3RA45997G

Wang M, Jiang X. Sulfur–sulfur bond construction. Top Curr Chem (Z). 2018;376:14. doi:10.1007/s41061-018-0192-5

Ong CL, Titinchi S, Juan JC, Khaligh NG. An Overview of recent advances in the synthesis of organic unsymmetrical disulfides. Helv Chim Acta. 2021;104(8):e2100053. doi:10.1002/hlca.202100053

Harusawa S, Yoshida K, Kojima C, Araki L, Kurihara T. Design and synthesis of an aminobenzo-15-crown-5-labeled estradiol tethered with disulfide linkage. Tetrahedron. 2004;60:11911–11922. doi:10.1016/j.tet.2004.09.109

Mu YQ, Nodwell M, Pace JL, Shaw JP, Judice JK. Vancomycin disulfide derivatives as antibacterial agents. Bioorg Med Chem Lett. 2004;14:735–738. doi:10.1016/j.bmcl.2003.11.040

Morais GR, Falconer RA. Efficient one-pot synthesis of glycosyl disulfides. Tetrahedron Lett. 2007;48:7637–7641. doi:10.1016/j.tetlet.2007.08.106

Yang F, Wang W, Li K, Zhao W, Dong X. Efficient one-pot construction of unsymmetrical disulfide bonds with TCCA. Tetrahedron. 2017;58:218–222. doi:10.1016/j.tetlet.2016.12.007

Yuan J, Liu C, Lei A. Oxidative cross S–H/S–H coupling: selective synthesis of unsymmetrical aryl tert-alkyl disulfanes. Org Chem Front. 2015;2:677–680. doi:10.1039/C5QO00027K

Vandavasi JK, Hu WP, Chen CY, Wang JJ. Efficient synthesis of unsymmetrical disulfides. Tetrahedron. 2011;67:8895–8901. doi:10.1016/j.tet.2011.09.071

Burmistrova DA, Smolyaninov IV, Berberova NT. Directed oxidative coupling of thiols in the synthesis of unsymmetrical disulfides. Russ Chem Bull. 2020;69:990–995. doi:10.1007/s11172-020-2860-1

Wang D, Liang X, Xiong M, Zhu H, Zhou Y, Pan Y. Synthesis of unsymmetrical disulfides via PPh 3-mediated reductive coupling of thiophenols with sulfonyl chlorides. Org Biomol Chem. 2020;18:4447–4451. doi:10.1039/D0OB00804D

Xu Y, Shi X, Wu L. tBuOK-triggered bond formation reactions. RSC Adv. 2019;9:24025–24029. doi:10.1039/C9RA04242C

Qiu X, Yang X, Zhang Y, Song S, Jiao N. Efficient and practical synthesis of unsymmetrical disulfides via base-catalyzed aerobic oxidative dehydrogenative coupling of thiols. Org Chem Front. 2019;6:2220–2225. doi:10.1039/C9QO00239A

Mayer CD, Allmendinger L, Bracher F. Synthesis of novel steroid analogues containing nitrile and disulfide moieties via palladium-catalyzed cross-coupling reactions. Tetrahedron. 2012;68:1810–1818. doi:10.1016/j.tet.2011.11.076

Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M. Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe. Angew Chem. 2011;123;10511–10513. doi:10.1002/ange.201104305

Yue H, Wang J, Xie Z, Tian J, Sang D, Liu S. 1,3‐Diisopropylcarbodiimide‐mediated synthesis of disulfides from thiols. ChemistrySelect. 2020;5:4273–4277. doi:10.1002/slct.202000638

Musiejuk M, Witt D. Recent developments in the synthesis of unsymmetrical disulfanes (disulfides). A review. Org Prep Proced Int. 2015;47(2):95–131. doi:10.1080/00304948.2015.1005981

Guo J, Zha J, Zhang T, Ding CH, Tan Q, Xu B. PdCl2/DMSO-catalyzed thiol–disulfide exchange: synthesis of unsymmetrical disulfide. Org Lett. 2021;23:3167–3172. doi:10.1021/acs.orglett.1c00858

Tanaka K, Ajiki K. Phosphine-free cationic rhodium(I) complex-catalyzed disulfide exchange reaction: convenient synthesis of unsymmetrical disulfides. Tetrahedron Lett. 2004;45:5677–5679. doi:10.1016/j.tetlet.2004.05.092

Itoh T, Tsutsumi N, Ohsawa A. Disproportionation reaction of disulfides promoted by nitric oxide (NO) in the presence of oxygen. Bioorg Med Chem Lett. 1999;9(15):2161–2166. doi:10.1016/S0960-894X(99)00350-9

Huang P, Wang P, Tang S, Fu Z., Lei A. Electro-oxidative S−H/S−H cross-coupling with hydrogen evolution: facile access to unsymmetrical disulfides. Angew Chem. 2018;130(27):8247–8251. doi:10.1002/ange.201803464

Wang Y, Deng L, Mei H, Bu B, Han J, Pan Y. Electrochemical oxidative radical oxysulfuration of styrene derivatives with thiols and nucleophilic oxygen sources. Green Chem. 2018;20:3444–3449. doi:10.1039/C8GC01337C

Sidiq N, Bhat MA, Khan KZ, Khuroo MA. Microwave‐assisted synthesis of disulfides using tetrathiomolybdate: A step toward greener synthesis. Heteroatom Chem. 2012;23:373–376. doi:10.1002/hc.21025

Dethe DH, Srivastava A, Dherange BD, Kumar BV. Unsymmetrical disulfide synthesis through photoredox catalysis. Adv Synth Catal. 2018;360:3020–3025. doi:10.1002/adsc.201800405

Spiliopoulou N, Kokotos CG. Photochemical metal-free aerobic oxidation of thiols to disulfides. Green Chem. 2021;23:546–551. doi:10.1039/D0GC03818K

Shatskiy A, Lundberg H, Kärkäs MD. Organic electrosynthesis: applications in complex molecule synthesis. ChemElectroChem. 2019;6(16):4067–4092. doi:10.1002/celc.201900435

Leech MC, Garcia AD, Petti A, Dobbs AP, Lam K. Organic electrosynthesis: from academia to industry. React Chem Eng. 2020;5:977–990. doi:10.1039/D0RE00064G

Amri N, Wirth T. Recent advances in the electrochemical synthesis of organosulfur compounds. Chem Rec. 2021;21:2526–2537. doi:10.1002/tcr.202100064

He M, Zhong P, Liu H, Ou C, Pan Y, Tang H. Electrochemically mediated three-component synthesis of isothioureas using thiols as sulfur source. Green Synth Cat. 2023;4(1):41–45. doi:10.1016/j.gresc.2022.03.002

Zhang YZ, Mo ZY, Wang HS, Wen XA, Tang HT, Pan YM. Electrochemically enabled chemoselective sulfonylation and hydrazination of indoles. Green Chem. 2019;21:3807–3811. doi:10.1039/C9GC01201J

Mo ZY, Zhang YZ, Huang GB, Wang XY, Pan YM, Tang HT. Electrochemical Sulfonylation of Alkynes with Sulfonyl Hydrazides: A Metal- and Oxidant-Free Protocol for the Synthesis of Alkynyl Sulfones. Adv Synth Catal. 2020;362:2160–2167. doi:10.1002/adsc.201901607

Do QT, Elothmani D, Le Guillanton G, Simonet J. A new electrochemical method of preparation of unsymmetrical disulfides. Tetrahedron Lett. 1997;38:3383–3384. doi:10.1016/S0040-4039(97)00624-2

Burmistrova DA, Smolyaninov IV, Berberova NT. Redox properties and reactivity of organic trisulfides in reactions with alkenes. Russ J Electrochem. 2020;56(4):329–336. doi:10.1134/S1023193520040035

Li Y, Wang H, Wang Z, Alhumade H, Huang Z. Electrochemical radical-mediated selective C(sp3)–S bond activation. Chem Sci. 2023;14:372–378. doi:10.1039/D2SC05507D

Lavrent’ev VA, Shinkar’ EV, Smolyaninov IV, Ryabukhin YuI, Berberova NT. Antimony(V) and Tin(IV) complexes with redox-active O,N,O-donor ligand in the electrosynthesis of symmetrical disulfides. Russ J Coord Chem. 2021;47:341–346. doi:10.1134/S1070328421050031

Sun XJ, Yang SF, Wang ZT, Liang S, Tian HY, Yang SX, Liu YG, Sun BG, Zeng CC. Electrochemically oxidative coupling of S–H/S–H for S–S bond formation: a facile approach to diacid-disulfides. ChemistrySelect. 2020;5:4637–4641. doi:10.1002/slct.202000872

Burmistrova DA, Galustyan A, Smolyaninov IV, Berberova N.T. Substituted o-Aminophenols as redox-mediators in the thiol oxidation to unsymmetrical disulfides. J Electrochem Soc. 2021;168(5):055501. doi:10.1149/1945-7111/abfe43

Burmistrova DA, Galustyan A, Smolyaninov IV, Berberova NT. Redox-mediated and microwave-assisted thiol activation: two approaches to unsymmetrical disulfides synthesis. J Electrochem Soc. 2022;169(11):116501. doi:10.1149/1945-7111/ac9d69

Piskunov AV, Tsys KV, Chegerev MG, Cherkasov AV. Tin(II) Complexes based on N-alkyl-substituted o-amidophenolate ligands: acid–base and redox transformations. Russ J Coord Chem. 2019;45:626–636. doi:10.1134/S1070328419090069

Abakumov GA, Chegerev MG, Piskunov AV, Starikova AA. Kubrin SP, Fukin GK, Cherkasov VK, Abakumov GA. Redox isomerism in main‐group chemistry: tin complex with o‐iminoquinone ligands. Eur J Inorg Chem. 2018;9:1087–1092. doi:10.1002/ejic.201701361

Gordon AJ, Ford RA. The Chemist's Companion. Wiley Intersci. Publ., New York; 1972. 541 p.




DOI: https://doi.org/10.15826/chimtech.2023.10.4.18

Copyright (c) 2023 Daria A. Burmistrova, Ivan V. Smolyaninov, Nadezhda T. Berberova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International