Cover Image

Interaction of silica with polystyrene: mechanical properties, polymer/filler adhesion and failure behavior

Selvin P. Thomas

Abstract


Composites of polystyrene with different loading of silica were prepared by melt mixing in a Brabender Plasticorder at a rotor speed of 60 rpm. The mechanical properties of the composites such as tensile behavior, impact strength, and flexural properties were studied as a function of filler loading. The tensile moduli of the composites increased with silica content. To improve adhesion between the filler and the matrix, an amino silane coupling agent was used. The composites with coupling agents showed enhanced mechanical properties. Thermal properties were measured using differential scanning calorimetry (DSC), thermogravimetry (TGA) and flammability tests. Composites with 15 wt.% and 0.5 wt.% coupling agent showed optimum properties. Scanning electron microscopy (SEM) studies of the tensile fractured samples revealed the extent of filler dispersion and filler/matrix interaction. Finally, experimental results were compared with theoretical predictions.

Keywords


polystyrene; composites; mechanical properties; particulate fillers; silica; modelling

Full Text:

PDF

References


Ramakoti IS, Panda AK, Gouda N. A brief review on polymer nanocomposites: current trends and prospects. J Polym Eng. 2023;43:651–679. doi:10.1515/polyeng-2023-0103

Teimouri A, Barbaz Isfahani R, Saber-Samandari S, Salehi M. Experimental and numerical investigation on the effect of core-shell microcapsule sizes on mechanical properties of microcapsule-based polymers. J Compos Mater. 2022;56:2879–2894. doi:10.1177/00219983221107831

Łapińska A, Grochowska N, Antonowicz J, Michalski P, Dydek K, Dużyńska A, Daniszewska A, Ojrzyńska M, Zeran-ska K, Zdrojek M. Influence of the filler distribution on PDMS-graphene based nanocomposites selected properties. Sci Rep. 2022;12(1):19038. doi:10.1038/s41598-022-23735-3

Mishra T, Mandal P, Rout AK, Sahoo D. A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Compos Part C Open Access. 2022;9:100298. doi:10.1016/j.jcomc.2022.100298

Agustiany EA, Rasyidur Ridho M, Rahmi DN M, Madyaratri EW, Falah F, Lubis MA, Solihat NN, Syamani FA, Karunga-mye P, Sohail A, Nawawi DS. Recent developments in lignin modification and its application in lignin‐based green com-posites: A review. Polym Compos. 2022;43:4848–4865. doi:10.1002/pc.26824

Ravindran L, MS Sreekala, Kumar S A, Thomas S. A compre-hensive review on phenol‐formaldehyde resin‐based com-posites and foams. Polym Compos. 2022;43:8602–8621. doi:10.1002/pc.27059

Rajak DK, Wagh PH, Linul E. A review on synthetic fibers for polymer matrix composites: performance, failure modes and applications. Mater. 2022;15:4790. doi:10.3390/ma15144790

Jagadeesh P, Puttegowda M, Rangappa SM, Alexey K, Gor-batyuk S, Khan A, Doddamani M, Siengchin S. A compre-hensive review on 3D printing advancements in polymer composites: technologies, materials, and applications. Int J Adv Manuf Technol. 2022;121:127–169. doi:10.1007/s00170-022-09406-7

Zare Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci Manufact. 2016;84:158–164. doi:10.1016/j.compositesa.2016.01.020

Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical proper-ties of polymer specimens: A review. Polym Test. 2018;69:157–166. doi:10.1016/j.polymertesting.2018.05.020

Alsubari S, Zuhri MY, Sapuan SM, Ishak MR, Ilyas RA, Asy-raf MR. Potential of natural fiber reinforced polymer com-posites in sandwich structures: A review on its mechanical properties. Polymers. 2021;13:423. doi:10.3390/polym13030423

Song Y, Zheng Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Progr Mater Sci. 2016;84:1–58. doi:10.1016/j.pmatsci.2016.09.002

Plagge J, Lang A. Filler-polymer interaction investigated using graphitized carbon blacks: Another attempt to ex-plain reinforcement. Polymer. 2021;218:123513. doi:10.1016/j.polymer.2021.123513

Siraj S, Al-Marzouqi AH, Iqbal MZ, Ahmed W. Impact of mi-cro silica filler particle size on mechanical properties of polymeric based composite material. Polymers. 2022;14:4830. doi:10.3390/polym14224830

Meddad A, Fisa B. Stress‐strain behavior and tensile dila-tometry of glass bead‐filled polypropylene and polyamide 6. J Appl Polym Sci. 1997;64:653-65. doi:10.1002/(SICI)1097-4628(19970425)64:4<653::AID-APP4>3.0.CO;2-M

Bartczak Z, Argon AS, Cohen RE, Kowalewski T. The mor-phology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer. 1999;40:2367–2380. doi:10.1016/S0032-3861(98)00443-1

Liu ZH, Kwok KW, Li RK, Choy CL. Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites. Polymer. 2002;43:2501–2506. doi:10.1016/S0032-3861(02)00048-4

Idumah CI, Obele CM. Understanding interfacial influence on properties of polymer nanocomposites. Surf Interfaces. 2021;22:100879. doi:10.1016/j.surfin.2020.100879

Papanicolaou GC, Theocaris PS, Spathis GD. Adhesion effi-ciency between phases in fibre-reinforced polymers by means of the concept of boundary interphase. Colloid Polym Sci. 1980;258:1231–1237. doi:10.1007/BF01668768

Alimardani M, Razzaghi-Kashani M, Ghoreishy MH. Predic-tion of mechanical and fracture properties of rubber com-posites by microstructural modeling of polymer-filler in-terfacial effects. Mater Des. 2017;115:348–354. doi:10.1016/j.matdes.2016.11.061

Nilagiri Balasubramanian KB, Ramesh T. Role, effect, and influences of micro and nano‐fillers on various properties of polymer matrix composites for microelectronics: a re-view. Polym Adv Technol. 2018;29:1568–1585. doi:10.1002/pat.4280

Ahmad Z, Sarwar MI, Mark JE. Thermal and mechanical properties of aramid‐based titania hybrid composites. J Appl Polym Sci. 1998;70:297–302. doi:10.1002/(SICI)1097-4628(19981010)70:2<297::AID-APP9>3.0.CO;2-P

Laura DM, Keskkula H, Barlow JW, Paul DR. Effect of glass fiber and maleated ethylene–propylene rubber content on tensile and impact properties of Nylon 6. Polymer. 2000;41:7165–7174. doi:10.1016/S0032-3861(00)00049-5

Alsewailem FD, Gupta RK. Effect of impact modifier types on mechanical properties of rubber‐toughened glass‐fibre‐reinforced nylon 66. Can J Chem Eng. 2006;84:693–703. doi:10.1002/cjce.5450840608

Aliotta L, Cinelli P, Coltelli MB, Lazzeri A. Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization. Eur Polym J. 2019;113:78–88. doi:10.1016/j.eurpolymj.2018.12.042

Sun R, Melton M, Safaie N, Ferrier Jr RC, Cheng S, Liu Y, Zuo X, Wang Y. Molecular view on mechanical reinforce-ment in polymer nanocomposites. Phys Rev Lett. 2021;126:117801. doi:10.1103/PhysRevLett.126.117801

Kishore K, Pandey A, Wagri NK, Saxena A, Patel J, Al-Fakih A. Technological challenges in nanoparticle-modified geo-polymer concrete: A comprehensive review on nano-material dispersion, characterization techniques and its mechanical properties. Case Stud Constr Mater. 2023;19:e02265. doi:10.1016/j.cscm.2023.e02265

Jagadeesh P, Puttegowda M, Mavinkere Rangappa S, Sieng-chin S. Influence of nanofillers on biodegradable compo-sites: A comprehensive review. Polym Compos. 2021;42:5691–5711. doi:10.1002/pc.26291

Mozetič M. Surface modification to improve properties of materials. Mater. 2019;12:441. doi:10.3390/ma12030441

Ersoy O, Köse H. Comparison of the effect of reactive and nonreactive treatments on the dispersion characteristics of a calcium carbonate (calcite) filler in a polypropylene ma-trix composite. Polym Compos. 2020;41:3483–3490. doi:10.1002/pc.25634

Patti A, Lecocq H, Serghei A, Acierno D, Cassagnau P. The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing. J Ind Eng Chem. 2021;96:1–33. doi:10.1016/j.jiec.2021.01.024

Owuamanam S, Cree D. Progress of bio-calcium carbonate waste eggshell and seashell fillers in polymer composites: a review. J Compos Sci. 2020;4:70. doi:10.3390/jcs4020070

Praveenkumara J, Madhu P, Yashas Gowda TG, Sanjay MR, Siengchin S. A comprehensive review on the effect of syn-thetic filler materials on fiber-reinforced hybrid polymer composites. J Text I. 2022;113:1231–1239. doi:10.1080/00405000.2021.1920151

Ouyang Y, Bai L, Tian H, Li X, Yuan F. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Compos Part A Appl Sci Manu-fact. 2022;152:106685. doi:10.1016/j.compositesa.2021.106685

Kumar A, Sharma K, Dixit AR. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. 2021;31:149–165. doi:10.1007/s42823-020-00161-x

Sharma M, Sharma R, Sharma SC. A review on fibres and fillers on improving the mechanical behaviour of fibre re-inforced polymer composites. Mater Today Proc. 2021;46:6482–6489. doi:10.1016/j.matpr.2021.03.667

Aziz T, Ullah A, Fan H, Jamil MI, Khan FU, Ullah R, Iqbal M, Ali A, Ullah B. Recent progress in silane coupling agent with its emerging applications. J Polym Environ. 2021;1:1–7. doi:10.1007/s10924-021-02142-1

Zhang Y, Ding C, Zhang N, Chen C, Di X, Zhang Y. Surface modification of silica micro-powder by titanate coupling agent and its utilization in PVC based composite. Constr Build Mater. 2021;307:124933. doi:10.1016/j.conbuildmat.2021.124933

Boufassa S, Hellati A, Doufnoune R. Correlations between the mechanical and thermal properties of polypropyl-ene/high density polyethylene/CaCO3 composites with the presence of coupling agents. Rev Roum Chim. 2019;64:1073–1082. doi:10.33224/rrch.2019.64.12.07

Kusuktham B. Mechanical properties and morphologies of high density polyethylene reinforced with calcium car-bonate and sawdust compatibilized with vinyltriethox-ysilane. Silicon. 2019;11:1997–2013. doi:10.1007/s12633-018-0020-0

Ming Y, Zhou Z, Hao T, Nie Y. Polymer Nanocomposites: Role of modified filler content and interfacial interaction on crystallization. Eur Polym J. 2022;162:110894. doi:10.1016/j.eurpolymj.2021.110894

Li G, Zhao T, Zhu P, He Y, Sun R, Lu D, Wong CP. Structure-property relationships between microscopic filler surface chemistry and macroscopic rheological, thermo-mechanical, and adhesive performance of SiO2 filled nano-composite underfills. Compos Part A Appl Sci Manufact. 2019;118:223–234. doi:10.1016/j.compositesa.2018.12.008

Huang L, Yu F, Liu Y, Lu A, Song Z, Liu W, Xiong Y, He H, Li S, Zhao X, Cui S. Understanding the reinforcement effect of fumed silica on silicone rubber: Bound rubber and its en-tanglement network. Macromolec. 2022;56:323–334. doi:10.1021/acs.macromol.2c01969

Wagner MP. Reinforcing silicas and silicates. Rubber Chem Technol. 1976;49:703–774. doi:10.5254/1.3534979

Muhammud AM, Gupta NK. Nanostructured SiO2 material: synthesis advances and applications in rubber reinforce-ment. RSC Adv. 2022;12:18524–18546. doi:10.1039/D2RA02747J

Maldas D, Kokta BV, Raj RG, Daneault C. Improvement of the mechanical properties of sawdust wood fibre—polystyrene composites by chemical treatment. Polymer. 1988;29:1255–1265. doi:10.1016/0032-3861(88)90053-5

Zhang Y, Ding C, Zhang N, Chen C, Di X, Zhang Y. Surface modification of silica micro-powder by titanate coupling agent and its utilization in PVC based composite. Constr Build Mater. 2021;307:124933. doi:10.1016/j.conbuildmat.2021.124933

Bigg DM. Mechanical properties of particulate filled poly-mers. Polym Compos. 1987;8:115–122. doi:10.1002/pc.750080208

Ananthapadmanabha GS, Deshpande V. Influence of aspect ratio of fillers on the properties of acrylonitrile butadiene styrene composites. J Appl Polym Sci. 2018;135:46023. doi:10.1002/app.46023

Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng. 2008;39:933–961. doi:10.1016/j.compositesb.2008.01.002

Leong YW, Abu Bakar MB, Ishak ZM, Ariffin A, Pukanszky B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci. 2004;91:3315–3326. doi:10.1002/app.13542

Tian Q, Yuan Q, Fang L, Wang Y, Liu Z, Deng D. Estimation of elastic modulus of cement asphalt binder with high con-tent of asphalt. Constr Build Mater. 2017;133:98–106. doi:10.1016/j.conbuildmat.2016.12.003

Madani M. Mechanical properties of polypropylene filled with electron beam modified surface-treated titanium diox-ide nanoparticles. J Reinf Plast Compos. 2010;29:1999–2014. doi:10.1177/0731684409341089

Cazan C, Enesca A, Andronic L. Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites. Polymers. 2021;13:2017. doi:10.3390/polym13122017

Nielsen LE. Simple theory of stress‐strain properties of filled polymers. J Appl Polym Sci. 1966;10:97–103. doi:10.1002/app.1966.070100107




DOI: https://doi.org/10.15826/chimtech.2024.11.1.05

Copyright (c) 2023 Selvin P. Thomas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice