Cover Image

Effect of graphite filler on the physiochemical properties of graphite reinforced thermoset rooflite – unsaturated polyester resin composites

M. Karunakaran, Ravi Subban, A. Thangamani, Chinnaswamy Vijayakumar Thangavel

Abstract


It is well known that many polymers are insulators with poor mechanical properties, which limit their use in fuel cell applications. Physicochemical properties of the polymers can be improved by adding conductive fillers. Carbon-based materials like graphite, which provides excellent mechanical strength and thermal conductivity to the polymer matrices, is of special interest because of its abundance, low cost and light weight when compared to other carbon allotropes. In the present work we describe the physicochemical properties of rooflite unsaturated polyester resin/graphite composites. Rooflite resin and three of its composites containing 1%, 3% and 5% of graphite by weight (C-2, C-3, and C-4, respectively) were synthesized and characterized by FTIR spectral data. XRD showed two peaks at 2q = 27.37°and 55.40° with d spacing value of 3.2559 nm and 1.6571 nm, respectively, indicating the change in degree of crystallinity of the composite. The calculated crystallinity for the resin is 7.3%, and for C-2, C-3 and C-4 its values are 12.1%, 14.3%, 17.1%, respectively, evidencing the interactions between the graphite and polymer matrix. The composites showed fractured surfaces and porous rough structure with randomly distributed vascularized cavities. Agglomeration occurs, when the concentration of graphite increases. The glass transition temperature for the pure resin is 65.9 °C and increases when the resin is filled with graphite. Thermogravimetric analysis (TGA) of the composites showed no marked difference between Tmax and Tfinal, and LOI values of C-3 and C-4 are above 21%, making them self-extinguishable materials that could be used for making bipolar plates. The chemical resistance investigation against water, NaCl, NaOH, acetic acid, and toluene showed more resistance to acid than alkali solutions. These rooflite resin/graphite composites could be further studied to explore the possibility of making bipolar plates, which are an essential component of fuel cells.


Keywords


rooflite; unsaturated polyester resin; graphite; composites; morphology;, thermal properties, chemical resistance study

Full Text:

PDF

References


Mutar MA, Safi Khliwi F, Jameel Kamel R. Mechanical properties of new composite unsaturated polyesters based on nano fillers for marine application. J Phys Conf Ser. 2019;1294(5):052075. doi:10.1088/1742-6596/1294/5/052075

Mohammed AJ, Razza HA. Study the effect of the adding the copper powder on the mechanical properties for unsaturated polyester. J Sci Eng Res. 2017;4(8):151.

Gañán P, Barajas J, Zuluaga R, Castro C, Marín D, Tercjak A. Builes DH. The evolution and future trends of unsaturated polyester biocomposites: a bibliometric analysis. Polymers (Basel). 2023;15(13):2970. doi:10.3390/polym15132970

Obayi CS, Odukwe AO, Obikwelu DON. Some tensile properties of unsaturated polyester resin reinforced with varying volume fractions of carbon black nanoparticles. Niger J Technol. 2008;27(1):20.

Goudarzi R, Motlagh GH. An Insight into the diffusion of unsaturated polyester (UP) resin into Expanded Graphite (EG) to improve the mechanical properties of the UP/EG composites. J Macromol Sci Part B. 2020;59(8):502. doi:10.1080/00222348.2020.1747231

Yavari N, Poorabdollah M, Rajabi L. Modified and unmodified Graphite/unsaturated polyester resin composites: thermal and mechanical behavior. Iran J Chem Eng. 2020;17(2):14. doi:10.22034/ijche.2020.232609.1334

Swain S. Synthesis and characterization of graphene based unsaturated polyester resin composites. Trans Electr Electron Mater. 2013;14(2):53. doi:10.4313/TEEM.2013.14.2.53

Goudarzi R, Motlagh GH, Elhamnia M, Motahari S, Graphite nanosheet as low shrinkage additive, curing accelerator, and conducting filler for unsaturated polyester resin. Polym Plast Technol Eng. 2016;55(12):1231. doi:10.1080/03602559.2015.1132468

Bastiurea M, Rodeanu Bastiurea MS, Andrei G, Dima D, Murarescu M, Ripa M, Circiumaru A. Determination of specific heat of polyester composite with graphene and graphite by differential scanning calorimetry. Tribol Ind. 2014;36(4):419.

Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text ReS J. 1959;29(10):786. doi:10.1177/004051755902901003

Jiang L, Zheng A, Zhao Z, He F, Li H, Wu N. The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis. Bioresour Technol. 2016;200:8. doi:10.1016/j.biortech.2015.09.096

Dwyer JL, Zhou M, Polymer characterization by combined chromatography-infrared spectroscopy. Int J Spectrosc. 2011;1. doi:10.1155/2011/694645

Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan C. Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. J Appl Phys. 2014;116(5):053518-1. doi:10.1063/1.4892089

Koto N, Soegijono B. Effect of rice husk ash filler of resistance against of high-speed projectile impact on polyester-fiberglass double panel composites. J Phys Conf Ser. 2019;1191:012058. doi:10.1088/1742-6596/1191/1/012058

Knežević N, Jovanović A, Bošnjaković J, Milošević M, Rančić M, Marinković A, J. Gržetić, H. Gamoudi, Fire-resistant composites based on acrylic-functionalized lignin and polyester resin obtained from waste poly(ethylene terephthalate). Sci Tech Rev. 2022;72(2):32. doi:10.5937/str2202032K

Lee UJ, Shin SR, Noh H, Song HB, Kim J, Lee DS, Kim BG. Rationally designed eugenol-based chain extender for self-healing polyurethane elastomers. ACS Omega. 2021;6(43):28848. doi:10.1021/acsomega.1c03802

Zięba-Palus J, The usefulness of infrared spectroscopy in examinations of adhesive tapes for forensic purposes. Forensic Sci Criminol. 2017;2(2):1. doi:10.15761/FSC.1000112

Reddy KO, Shukla M, Maheswari CU, Rajulu AV. Evaluation of mechanical behavior of chemically modified Borassus fruit short fiber/unsaturated polyester composites. J Compos Mater. 2012;46(23):2987. doi:10.1177/0021998312454032

Bera M, Chandravati, Gupta P, Maji PK, Facile One-Pot Synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. J Nanosci Nanotechnol. 2018;18(2):902. doi:10.1166/jnn.2018.14306

Ruiz S, Tamayo JA, Ospina JD, Navia Porras DP, Valencia Zapata ME, Hernandez JHM, Valencia CH, Zuluaga F, Grande Tovar CD. Antimicrobial films based on nanocomposites of chitosan/poly(vinyl alcohol)/graphene oxide for biomedical applications. Biomolecules. 2019;9(3):109. doi:10.3390/biom9030109

Ban FY, Majid SR, Huang NM, Lim HN. Graphene oxide and its electrochemical performance. Int J Electrochem Sci. 2012;7:4345. doi:10.1016/S1452-3981(23)19543-5

Isa MT, Ahmed AS, Aderemi O, Taib M, Mohammed-Dabo IA. Effect of dioctyl phthalate on the properties ofunsaturated polyester resin. Int J Mater Sci. 2012;7(1):9.

Ambika MR, Nagaiah N, Harish V, Lokanath NK, Sridhar MA, Renukappa NM, Suman SK. Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat Phys Chem. 2017;130:351. doi:10.1016/j.radphyschem.2016.09.022

Pichaimani P, Arumugam H, Gopalakrishnan D, Krishnasam B, Muthukaruppan A. Partially exfoliated α-ZrP reinforced unsaturated polyester nanocomposites by simultaneous co-polymerization and brønsted acid–base strategy. J Inorg Organomet Polym Mater. 2020;30(10):4095. doi:10.1007/s10904-020-01558-x

Stanev V, Vesselinov V.V, Kusne AG, Antoszewski G, Takeuchi I, Alexandrov BS. Unsupervised phase mapping of X-ray diffraction data by nonnegative matrix factorization integrated with custom clustering. Npj Comput Mater. 2018;4(1):43. doi:10.1038/s41524-018-0099-2

Maradini G, Oliveira M, Guanaes G, Passamani GZ, Carreira LG, Boschetti WTN, Monteiro SN, Pereira AC, de Oliveira BF. Characterization of polyester nanocomposites reinforced with conifer fiber cellulose nanocrystals polymers (Basel). 2020;12(12):2838. doi:10.3390/polym12122838

Wangn Y, Zhang M, Chang S, Li S, Huang X. Laser-induced ignition and combustion behavior of individual graphite microparticles in a micro-combustor processes. 2020;8(11):1493. doi:10.3390/pr8111493

Gan L, Guo H, Wang Z, Li X, Peng W, Wang J, Huang S, Su M. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim Acta. 2013;104:117. doi:10.1016/j.electacta.2013.04.083

Braga NF, Passador FR, Saito E, Cristovan FH. Effect of graphite content on the mechanical properties of Acrylonitrile-Butadiene-Styrene (ABS). Macromol Symp. 2019;383(1):1800018. doi:10.1002/masy.201800018

Zhou L, Zhou R, Zuo J, Tu S, Yin Y, Ye L. Unsaturated polyester resins with low- viscosity: preparation and mechanical properties enhancement by isophorone diisocyanate (IPDI) modification. Mater Res Express. 2019;6(11):115305. doi:10.1088/2053-1591/ab4380

Feng L, Li R, Yang H, Chen S, Yang W. The hyperbranched polyester reinforced unsaturated polyester resin. Polymers (Basel). 2022;14(6):1127. doi:10.3390/polym14061127

Heo SI, Yun JC, Oh KS, Han KS, Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells. Adv Compos Mater. 2006;15(1):115. doi:10.1163/156855106776829356

Alghamdi AS, Ashcroft IA, Song M. Creep resistance of novel Polyethylene/Carbon Black nanocomposites. Int J Mater Sci Eng. 2014;15:16. doi:10.12720/ijmse.2.1.1-5

Ukoba KO, Inambao FL, Eloka-Eboka AC. Fabrication of Affordable and sustainable solar cells using NiO/TiO2 P - N Heterojunction. Int J Photoenergy. 2018;2018:1. doi:10.1155/2018/6062390

Dusevich VM, Purk JH, Eick JD, Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners). Micros Today. 2010;18(1):48. doi:10.1017/S1551929510991190

Hapke J, Gehrig F, Huber N, Schulte K, Lilleodden ET. Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis Compos Sci Technol. 2017;71(1):1242. doi:10.1016/j.compscitech.2011.04.009

Abdul Khalil HPS, Tye YY, Ismail Z, Leong JY, Saurabh CK, Lai TK, Chong EWN, Aditiawati P, Tahir PM, Dungani R. Oil palm shell nanofiller in seaweed-based composite film: Mechanical, Physical, and Morphological Properties. BioResources. 2017;12(3):5996. doi:10.15376/biores.12.3.5996-6010

Bing N, Yang J, Gao H, Xie H, Yu W. Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion. Renew Energy. 2021;173:926. doi:10.1016/j.renene.2021.04.033

Bastiurea M, Bastiurea MS, Andrei G, Murarescu M, Dumitru D. Determination of Glass Transition Temperature for Polyester / Graphene Oxide and Polyester / Graphite Composite by TMA and DSC. Metall Mater Sci. 2015;38(2):32.

Jaya Vinse Ruban Y, Ginil Mon S, Vetha Roy D. Chemical resistance/thermal and mechanical properties of unsaturated polyester-based nanocomposites. Appl Nanosci. 2014;4(2):233. doi:10.1007/s13204-013-0193-1

Jia W, Tchoudakov R, Narkis M, Siegmann A, Performance of expanded graphite and expanded milled-graphite fillers in thermosetting resins. Polym Compos. 2005;26(4):526. doi:10.1002/pc.20123

Bastiurea M, Rodeanu MS, Andrei G, Dima D, Cantaragiu A. Correlation between graphene oxide / graphite content and thermal properties of polyester composites. Dig J Nanomater Biostructures. 2015;10(4):1109.

Cherian AB, Varghese LA, Thachil ET, Epoxy-modified, unsaturated polyester hybrid networks. Eur Polym J. 2007;43(4):1460. doi:10.1016/j.eurpolymj.2006.12.041

Magampa PP, Manyala N, Focke WW. Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder. J Nucl Mater. 2013;436(1–3):76. doi:10.1016/j.jnucmat.2013.01.315

Bastiurea M, Rodeanu MS, Dima D, Murarescu M, Andrei G. Thermal and mechanical properties of polyester composites with graphene oxide and graphite. Dig J Nanomater Biostructures. 2015;10(2):521.

Kandare E, Kandola BK, Price D, Nazaré S, Horrocks RA. Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS. Polym Degrad Stab. 2008;93(11):1996. doi:10.1016/j.polymdegradstab.2008.03.032

Tibiletti L, Longuet C, Ferry L, Coutelen P, Mas A, Robin JJ, Lopez-Cuesta JM. Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides. Polym Degrad Stab. 2011;96(1):67. doi:10.1016/j.polymdegradstab.2010.10.015

Dai K, Song L, Hu Y. Study of the flame retardancy and thermal properties of unsaturated polyester resin via incorporation of a reactive cyclic phosphorus-containing monomer. High Perform Polym. 2013;25(8):938. doi:10.1177/0954008313490767

Ramadan N, Taha M, La Rosa AD, Elsabbagh A. Towards selection charts for epoxy resin, unsaturated polyester resin and their fibre-fabric composites with flame retardants. Mater. 2021;14(5):1181. doi:10.3390/ma14051181

Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites Mater Sci Eng R Reports. 2009;63(3):100. doi:10.1016/j.mser.2008.09.002

Ranganathan T, Beaulieu M, Zilberman J, Smith KD, Westmoreland PR, Farris RJ, Coughlin EB, Emrick T. Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography/mass spectrometry. Polym Degrad Stab. 2008;93(6):1059. doi:10.1016/j.polymdegradstab.2008.03.021

Dai K, Song L, Jiang S, Yu B, Yang W, Yuen RKK, Hu Y. Unsaturated polyester resins modified with phosphorus-containing groups: Effects on thermal properties and flammability Polym Degrad Stab. 2013;98(10):2033. doi:10.1016/j.polymdegradstab.2013.07.008

Noorunnisa Khanam P, Abdul Khalil HPS, Jawaid M, Ramachandra Reddy G, Surya Narayana C, Venkata Naidu S. Sisal/Carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties. J Polym Environ. 2010;18(4):727. doi:10.1007/s10924-010-0210-3

Ramamoorthi R, Sampath PS. Experimental investigation of influence of Halloys nanotubes on mechanical and chemical resistance properties of glass fiber reinforced epoxy non composites. J Sci Ind Res. 2015;74:685.

Ashok Kumar M, Hemachandra Reddy K, Ramachandra Reddy G, Venkata Mohana Reddy Y, Subbarami Reddy, Tensile, thermal properties & chemical resistance of epoxy/hybrid fibre composites (Glass/Jute) filled with silica powder. Macromol Indian J. 2010;6(2):133.

Tasnim S, Uddin Ahmed Shaikh F. Effect of chemical exposure on mechanical properties and microstructure of lightweight polymer composites containing solid waste fillers. Constr Build Mater. 2021;309:125192. doi:10.1016/j.conbuildmat.2021.125192

Singha AS, Thakur VK. Chemical resistance, mechanical and physical properties of biofibers -based polymer composites. Polym Plast Technol Eng. 2009;48(7):736. doi:10.1080/03602550902824622

Hazarika A, Maji TK. Study on the properties of wood polymer nanocomposites based on melamine formaldehyde-furfuryl alcohol copolymer and modified clay. J Wood Chem Technol. 2013;33(2):103. doi:10.1080/02773813.2012.751428

Mandal M, Halim Z, Maji TK. Mechanical, moisture absorption, biodegradation and physical properties of nanoclay-reinforced wood/plant oil composites SN Appl Sci. 2020;2(2):250. doi:10.1007/s42452-020-1984-0

Karthikeyan SKS, Sujatha MSM, Hemalatha NHN. Synthesis and characterization of multi-walled carbon nanotube from pine oil and their impact on carbon fibre reinforced epoxy hybrid nanocomposite. J Environ Nanotechnol. 2021;10(2):10. doi:10.13074/jent.2021.06.212437




DOI: https://doi.org/10.15826/chimtech.2024.11.1.08

Copyright (c) 2024 M. Karunakaran, Ravi Subban, A. Thangamani, Chinnaswamy Vijayakumar Thangavel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice