Cover Image

Modern instrumentation and practical application of flame atomic emission spectrometry

E. A. Zauer

Abstract


The modern instrumentation for flame atomic emission spectrometry (FAES) is overviewed: the main technical (composition of the fuel gas used, dispersing element, number of analytical channels, reference channel, detecting element, sampling method) and analytical (determined elements, range of determined concentrations, limits and the accuracy of their determination, the duration of a single measurement, the equired amount of the analyzed sample) characteristics of flame photometers for industrial and clinical use as well as spectrophotometers currently made by various manufacturers such as Sherwood Scientific Ltd., BWB Technologies UK Ltd., Labtron Equipment Ltd., Labnics Equipment Ltd. and JENWAY Ltd (UK); A.KRÜSS Optronic (Germany); Cole Parmer Instrument Company and Labfon Equipment Inc. (USA); Inesa Analytical Instrument Co., Ltd (China); OJSC Zagorsk Optical and Mechanical Plant, Unico-SIS LLC and VMK-Optoelectronics LLC (Russia); Manti Lab Solutions, Labtronics, Systonic, Globe Instruments, Electronics India, Lasany (India). The main areas of application of FAES are presented – bioenergy, agriculture (analysis of plants, soil extracts and fertilizers), mineral raw materials (geology), clinical medicine and pharmaceuticals, food industry, environmental control (analysis of drinking, technical and waste water), nuclear energy, metallurgy and chemical industry, as well as some features and problems associated with the preparation of samples for analysis by the FAES method. The review includes references to works on the practical application of FAES, published mainly from 1998 to 2023.

 


Keywords


flame; flame spectrometry; analysis; instrumentation;applications

Full Text:

PDF

References


Fernández-Sánchez ML, Fernández-Arguelles MT, Costa-Fernández JM. Optical atomic emission spectrometry/flame photometry. Encyclopedia of Analytical Science (Third Edition) 2019, pp. 160–1686. doi:10.1016/B978-0-12-409547-2.14533-0

Sherwood-scientific (2023). Available at: https://www.sherwood-scientific.com/products/flame-photometer/. Accessed on 23 December 2023.

Jenway (2023). Available at: http://www.jenway.com/product.asp?dsl=266. Accessed on 23 December 2023.

BWB (2023). Available at: http://flamephotometer.ru/?yclid=3884582251117709598. Accessed on 23 December 2023.

Spectrolab (2023). Available at: http://www.ic-labs.com/pdfs/Other%20products/PDF/Flame%20Photometer.pdf; https://laboratorytalk.com/directory/12661/spectrolab. Accessed on 23 December 2023.

Labnics (2023). Available at: https://www.labnics.com/Analytical-Instruments/spectrometer/flame-photometer/nfp-100. Accessed on 23 December 2023.

Labtron (2023). Available at: https://www.labtron.com/search?product_name=LFP; Flame-Photometer.pdf (yandex.ru); https://www.labtron.com/catalog/Flame-Photometer.pdf; https://www.labtron.com/catalog/Flame-Photometer.pdf. Accessed on 23 December 2023.

Kruess (2023). Available at: https://www.kruess.com/en/produkte/flame-photometers/fp8700-automat-mit-verduennung/. Accessed on 23 December 2023.

Cole-parmer (2023). Available at: https://www.coleparmer.com/i/cole-parmer-dual-channel-flame-photometer/0265510; http://www.coleparmer.com/c/flame-photometers?searchterm=Flame%20Photometers. Accessed on 23 December 2023.

Labfon Equipment Inc. (2023). Available at: https://www.labfon.com/view_catalog/F-FPM106. Accessed on 13 December 2023.

Manti Lab Solutions (2023). Available at: https://www.industrybuying.com/flame-photometer-manti-lab-LA.FL8.489193. Accessed on 23 December 2023.

Labtronics (2023). Available at: https://www.indiamart.com. Accessed on 23 December 2023.

Systonic (2023). Available at: https://www.systonic.in/product/digital-flame-photometer-s-931/. Accessed on 13 June 2023.

Globescientificinstruments (2023). Available at: https://www.indiamart.com/globescientificinstruments/flamephotometers.html/. Accessed on 13 June 2023.

Electronics India (2023). Available at: https://electronicsindia.co.in/products/flame_photometer/. Accessed on 13 June 2023.

Nd-gsi (2023). Available at: http://nd-gsi.ru/grsi/110xx/11777-05.pdf. Accessed on 23 March 2023.

Inesa analytical instrument Co., Ltd (2023). Available at: https://inesaanalytricalinstrument.tradeindia.com/fp6450-multi-element-flame-photometer-6432271.html. Accessed on 23 December 2023.

Labservicesnc (2023). Available at: http://www.labservicesnc.com/eng/inizio-eng.html. Accessed on 23 March 2023.

Lasany (2023). Available at: https://www.indiamart.com/. Accessed on 23 December 2023.

Unico-sys (2023). Available at: http://unico-sys.ru/osnovnaya-produkciya/plamennye-fotometry/pfa-378/ http://www.unico-sys.ru/osnovnaya-produkciya/plamennye-fotometry/. Accessed on 13 December 2023.

Garanin VG, Nekljudov OA, Petrochenko DV. Programmnoe obespechenie atomno-jemissionnogo spektral'nogo analiza (programma «Atom»). Zav Lab. 2012;78(1):69–73. Russian.

Put'makov AN, Zarubin IA, Burumov ID, Seljunin DO. Spektrometr «Pavlin» dlja plamennogo atomno-jemissionnogo spektral'nogo analiza. Zavodskaja laboratorija. Diagnostika Materialov. 2015;81(1):105–108. Russian.

Matveeva AG, Gapeeva SI. Primenenie mnogokanal'nogo spektrometra «Kolibri-2» dlja analiza litievyh soedinenij metodom plamennoj fotometrii. Zavodskaja Laboratorija. Diagnostika materialov. 2012;78(1):91–94. Russian.

Zarubin IA, Putmakov AN, Lukina EA, Selunin DO, Burumov ID. Extending the working range for the flame photometric determination of alkali metals and calcium using the PAVLIN spectrometer. Analitika I kontrol [Analytics and Control]. 2021;25(4):326–330. doi:10.15826/analitika.2021.25.4.003

Isaac R, Kerber JD. Atomic absorption and flame photometry: techniques and uses in soil, plant, and water analysis. (Book Chapter). Instrumental Methods for Analysis of Soils and Plant Tissue. 2015:17–37. doi:10.2136/1971.INSTRUMENTALMETHODS.C2

Shabanova EV, Zak AA, Vasil'eva IE. Probopodgotovka geologicheskih obrazcov dlja odnovremennogo opredelenija pjati shhelochnyh jelementov metodom plamennoj atomno-jemissionnoj spektrometrii. Zh analit himii. 2018;73(9):671–679. Russian. doi:10.1134/S004445021809013X

Dolezhal Ya, Povondra P, Shul'cek Z. Metody razlozheniya gornyh porod i mineralov /per. s chesh. k.g-m.n. Popova N.P., pod red. d.h.n. Sochevanova V.G. Moskow, Mir, 1968. 276 p. Russian.

Zak AA, Shabanova EV, Vasil’eva IE. Results accuracy of the simultaneous Na, K, Li, Rb and Cs determination in geochemical objects using the Flame Atomic Emission Spectrometry. Analitika i kontrol’ [Analytics and Control]. 2021;25(1):6–19. doi:10.15826/analitika.2021.25.1.004

Kurilenko LN, Kostyreva TG. Determination of quantities of sodium and potassium taking into account their mutual influence in glass and zeolites using the method of flame atomic emission spectrometry. Glass Phys Chem. 2016;42(3):266–269. doi:10.1134/S1087659616030068

Shevchenko VV, Kotsai GN. Influence of temperature on the extraction of alkali from glass powder additives to portland cement. Glass Phys Chem. 2017;43(5):536–537. doi:10.1134/S1087659617050169

Sokolnikova JV, Vasilyeva IE, Menshikov VI. Determination of trace alkaline metals in quartz by flame atomic emission and atomic absorption spectrometry. Spectrochim Acta Part B Atomic Spectroscopy. 2003;58(2):387–391. doi:10.1016/S0584-8547(02)00153-2

Baldez DL, Avila LO, Torres DP, Martinazzo R, Silveira CAP, Vieira MA. Determination of potassium in silicate rocks by flame atomic emission spectrometry after ultrasound dissolution. Quimica Nova. 2018;41(10):1095–1100. doi:10.21577/0100-4042.20170290

Peters D, Hajes Dzh, Hift'e G. Himicheskoe razdelenie i izmerenie. Teoriya i praktika analiticheskoj himii. Moscow, Himiya, 1978. 816 p. Russian.

Buzanovskij VA. Hronologija issledovanij po metodam opredelenija koncentracii kalija v krovi cheloveka. Obzornyj zhurnal po himii. 2015;5(1):3 (in Russian).

Buzanovskij VA. Metody opredelenija kalija v krovi. Izvestija Akademii inzhenernyh nauk im. A.M. Prohorova. 2015;1:14–35. Russian.

Buzanovskij VA. Retrospektiva issledovanij po metodam opredelenija koncentracii natrija v krovi cheloveka. Izvestija Akademii inzhenernyh nauk im. A.M. Prohorova. 2015;2:39–65. Russian.

Garcia RA, Vanelli CP, Pereira Junior OdS, Corrêa JOdA. Comparative analysis for strength serum sodium and potassium in three different methods: Flame photometry, ion‐selective electrode (ISE) and colorimetric enzymatic. J Clin Lab Anal. 2018. doi:10.1002/jcla.22594

El Otmani IS, Jarmoumi A, Bouatia M, Mojemmi B, Idrissi MO, Draoui M, Kamal N. Correlation study between two analytical techniques used to measure serum potassium: An automated potentiometric method and flame photometry reference method. Published 2015.

Buzanovskii VA. Determination of calcium in blood. Rev J Chem. 2019;9(1):12–70. doi:10.1134/S2079978018040027

Mannapperuma U, Mannapperuma U, Peiris CM, Thambavita D, Galappaththy P, Pathiranage CD, Lionel A, Jayakody RL Validation of a flame photometric method for serum lithium estimation. Ceylon J Med Sci. 2017;54(2):17. doi:10.4038/cjms.v54i2.4824

Luzanova IS, Voznesenskaja TV, Menickaja VI, Putinskaja EV. Opredelenie soderzhanija litija v bioobektah (pechen', pochki) cheloveka metodom plamennoj fotometrii. Sudebno-medicinskaja jekspertiza. 2007;50(5):38–39. Russian.

Souza LAC, Trebak F, Kumar V, Satou R, Kehoe PG, Yang W, Wharton W, Feng Earley Y. Elevated cerebrospinal fluid sodium in hypertensive human subjects with a family history of Alzheimer's disease. Physiol Genomics. 2020;52(3):133–142. doi:10.1152/physiolgenomics.00093.2019

Natochin YuV, Prokopenko AV, Kuznecova AA, Shahmatova EI. Funkcional'naya diagnostika sindroma neadekvatnoj sekrecii antidiureticheskogo gormona pri pnevmonii detej. Pediatriya. Zhurnal im. G.N. Speranskogo. 2020;99(2):95–101. doi:10.24110/0031-403X-2020-99-2-95-101

Selifonov AA, Danchuk AI. Issledovanie smeshannoj sljuny cheloveka metodom plamennoj fotometrii. Bjulleten' medicinskih internet-konferencij. 2015;5(12):1740.

Garg V, Oberoi SS, Gorea RK, Kiranjeet K. Changes in the levels of vitreous potassium with increasing time since death. J Ind Acad Forensic Med. 2004;26(4):136–139.

Bermejo-Barrera P, Moreda-Pineiro A, Moreda-Pineiro J, Bermejo-Barrera A. Acid predigestion as a slurry pretreatment for the determination of Ca, Cu, K, Mg, Na and Zn in human scalp hair by flame atomic absorption/emission spectrometry with a high-performance nebulizer. Fresenius' J Anal Chem. 1998;360(6):707–711. doi:10.1007/s002160050786

Al Omari MMH. Profiles of Drug Substances. Excipients and Related Methodology. 2016;41:31–132. doi:10.1016/bs.podrm.2015.11.003

Willebrands AF Jr. The determination of sodium and potassium in blood serum and urine by means of the flame photometer. 1950: doi:10.1002/recl.19500690702

Buzanovskij VA. Opredelenie kalija v krovi cheloveka (po materialam zhurnala CLINICAL CHEMISTRY). Zhurnal analiticheskoj himii. 2015;70(4):434–444. doi:10.7868/S0044450215040040

Stasjukinene VR, Pilvinis VK, Rejngardene DI. Gipomagniemija u bol'nyh hronicheskim alkogolizmom vo vremja abstinentnogo sindroma. Terapevticheskij arhiv. 2004;79(11):97–99. Russian.

Stryuk RA, Mkrtumyan AM, Bindita PL. Funkcionalynoe sostoyanie adrenoreceptorov u bolynyh metabolicheskim sindromom. Russ Med J. 2008;15:1007–1012. Russian.

Spencer АG. Flame photometry. The Lanzet. 1950;256(6639):623–627. doi:10.1016/s0140-6736(50)91586-8

Peitzman SJ. The flame photometer as engine of nephrology: A biography. Am J Kidney Dis. 2010;56(2):379–386. doi:10.1053/j.ajkd.2010.02.343

Turney JH, Blagg CR, Pickstone JV. Early Dialysis in Britain: Leeds and Beyond. Am J Kidney Dis. 2011;57(3):508–515. doi:10.1053/j.ajkd.2010.10.043

Ekbal NJ, Consalus A, Persaud J, Davenport A. Reliability of delivered dialysate sodium concentration. Hemodial Int. 2016;20:2–6. doi:10.1111/hdi.12465

Shendi AM, Davenport A. The difference between delivered and prescribed dialysate sodium in haemodialysis machines. Clin Kidney J. 2021;14(3):863–868. doi:10.1093/ckj/sfaa022

Hoenig MP, Zeidel ML. Homeostasis, the Milieu Interieur, and the Wisdom of the Nephron. Clin J Am Soc Nephrol. 2014;9(7):1272–1281. doi:10.2215/CJN.08860813

Yushmanov VE, Kharlamov A, Yanovski B, LaVerde G, Boada FE, Jones SC. Correlated sodium and potassium imbalances within the ischemic core in experimental stroke: a 23Na MRI and histochemical imaging study. Brain Res. 2013;1527:199–208. doi:10.1016/j.brainres.2013.06.012

Pérez-López E, Alvarado PR. Implementación de un método para la determinación de sodio en soluciones parenterales por fotometría de llama (Implementation of a method for the determination of sodium in parenteral solutions by flame photometry). Revista Tecnología en Marcha. Tecnología en Marcha. 2017;30(4). doi:10.18845/tm.v30i4.3414

Mishra P, Mahapatra MK. Comparison of sodium and potassium content in ORS powders by Flame photometric method. Res J Pharm Biol Chem Sci. 2011;2(3):262–267.

Rajendraprasad N, Basavaiah K. Sensitive Spectrophotometric and Flame Photometric Methods for Determination of Diclofenac Sodium in Pharmaceuticals. IJAAC Int J Anal Appl Chem. 2016;2(2).

Gojković V, Šalić M, Antunović V, Vučić G, Marjanović-Balaban Ž. Determination of the content of mineral substances applying different methods of chemical analysis. Quality Life. 2015;6(3–4):88–94. doi:10.7251/QOL1503088G

Weeks JF Jr. Flame photometric and atomic absorption determination of calcium, potassium, and sodium in Ringer's solution and injection and in lactated Ringer's solution. J Assoc Off Anal Chem. 1977;60(4):929–934. doi:10.1093/jaoac/60.4.929

Emel'janova IA, Kondrat'ev ML, Shkuratova OV. Validacija metoda plamennoj fotometrii dlja opredelenija natrij iona v preparate al'bumin. Sibirskij zhurnal klinicheskoj i jeksperimental'noj mediciny. 2011;2:91–95. Russian.

Carter JA, Barros AI, Nóbrega JA, Donati GL. Traditional calibration methods in atomic spectrometry and new calibration strategies for inductively coupled plasma mass spectrometry. Front Chem. 2018;6:504. doi:10.3389/fchem.2018.00504

Martínez LD, Gil RA, Pacheco PH, Cerutti S. Elemental composition analysis of food by FAES and ICP-OES (Book Chapter). Handbook of Mineral Elements in Food. 2015:219–238. doi:10.1002/9781118654316.ch11

Demirel S, Tuzen M, Saracoglu S, Soylak M. Evaluation of various digestion procedures for trace element contents of some food materials. J Hazard Mater. 2008;152:1020–1026. doi:10.1016/j.jhazmat.2007.07.077

Altundag H, Tuzen M. Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP‐OES. Food Chem Toxicol. 2011;49:2800–2807. doi:10.1016/j.fct.2011.07.064

Baker SA, Miller-Ihli NJ. Atomic Spectroscopy in Food Analysis. Encyclopedia of Analytical Chemistry. John Wiley & Sons., Ltd; 2006: doi:10.1002/9780470027318.a1003

Kingston H, Jassie LB. Introduction to Microwave Sample Preparation. ACS Press, Washington, DC, 1988.

Chu HT, Taylor SE. An Experimental Demonstration of a Multi-element Flame Photometer: Determination of Salt Concentration in Soy Sauce. Int J Chem. 2016; 8(1):25–31. doi:10.5539/ijc.v8n1p25

Chen MJ, Hsieh YT, Weng YM, Chiou RYY. Flame Photometric Determination of Salinity in Processed Foods. Food Chem. 2005; 91: 765-70. doi:10.1016/j.foodchem.2004.10.002

Vieira E, Soares ME, Ferreira IMPLVO. Pinho O. Validation of a fast sample preparation procedure for quantification of sodium in bread by flame photometry. Food Anal Methods. 2012;5:430–434. doi:10.1007/s12161-011-9247-8

Castanheira I, Figueiredo C, André C, Coelho I, Silva AT, Santiago S, Fontes T, Mota C, Calhau MA. Sampling of bread for added sodium as determined by flame photometry. Food Chem. 2009;113(2):621–628. doi:10.1016/j.foodchem.2008.07.047

Bellido-Milla D, Moreno-Perez JM, Hernández-Artiga MP. Differentiation and classification of beers with flame atomic spectrometry and molecular absorption spectrometry and sample preparation assisted by microwaves. Spectrochim Acta Part B Atomic Spectroscopy. 2000; 55(7): 855–864. doi:10.1016/S0584-8547(00)00164-6

Luh BS, Niketić G. Flame photometric determination of calcium, magnesium and potassium in canned tomatoes. J Food Sci. 2006;24(3):305–309. doi:10.1111/j.1365-2621.1959.tb17276.x

Kékedy-Nagy L, Zsigmond AR, Cordoş EA. Quantification of the rubidium in beverage products micro samples by platinum-wire loop in flame atomization atomic emission spectrometry. Acta Chim Slov. 2010;57(4):912–915.

Pohl P, Stecka H, Sergiel I, Jamroz P. Different aspects of the elemental analysis of honey by flame atomic absorption and emission spectrometry: a review. Food Anal Methods. 2012;5(4):737–751. doi:10.1007/s12161-011-9309-y

Zhiljakova TA, Dernovaja EV, Ol'hovoj JuL, Guseva IP. Primenenie atomno-absorbcionnyh i atomno-jemissionnyh metodov v analize osnovnyh jele-mentov mineral''nogo sostava vinoprodukcii. Magarach. Vinogradarstvo i vinodelie. 2017;3:41–43.

Kékedy-Nagy L, Cordoş EA. Flame atomic emission determination of rubidium in mineral and well waters using methane–air flame as excitation source. Talanta. 2000;52(4):645–652. doi:10.1016/S0039-9140(00)00398-2

Kékedy-Nagy L, Darvasi E. Flame atomic emission spectrometry determination of cesium in mineral and well waters using a methane-air flame. Studia Universitatis Babeş-Bolyai. Chemia. 2006;1:91–101.

Eugen D, Norbert M, Csilla S. Simultaneous determination of calcium and magnesium in natural waters by methane-air flame emission and flame atomic absorption spectrometry using a microspectrometer. Studia Universitatis Babes-Bolyai Chemia. 2016;61:311–320.

Hajrulina AG, Temerev SV. Opredelenie natrija i kalija v prirodnyh vodah metodom fotometrii plameni. Izvestija Altajskogo gosudarstvennogo universiteta. 2012;3–2(75):146–149 (in Russian).

Banerjee P, Prasad B. Determination of concentration of total sodium and potassium in surface and ground water using a flame photometer. Appl Water Sci. 2020;10:113. doi:10.1007/s13201-020-01188-1

Patil CS, Arbad BR. Flame photometric determination of traces of sodium content of the sea water sample. Asian J Chem. 2003;15(1):557–558.

Dancsak SE, Silva SG, Nóbrega JA, Jones BT, Donati GL. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry. Anal Chim Acta. 2014;806:85–90. doi:10.1016/j.aca.2013.10.055

Korn MGA, Santos DCMB, Guida MAB, Barbosa IS, Passos MLC, Saraiva MLMFS, Lima JLFC. Evaluation of digestion procedures for simultaneous determination of Ca, P, Mg, K and Na in biodiesel by inductively coupled plasma optical emission spectrometry. J Braz Chem Soc. 2010;21:2278–2284. doi:10.1590/S0103-50532010001200015

Iqbal J, Carney WA, Lacaze S, Theegala CS. Metals determination in biodiesel (B100) by ICP-OES with microwave assisted acid digestion. Open Anal Chem J. 2010;4:18–26. doi:10.2174/1874065001004010018

de Oliveira AP, Villa RD, Antunes KCP, de Magalhães A, e Silva EC. Determination of sodium in biodiesel by flame atomic emission spectrometry using dry decomposition for the sample preparation. Fuel. 2009;88(4):764–766. doi:10.1016/j.fuel.2008.10.006

Barros AI, de Oliveira AP, de Magalhães MRL, Villa RD. Determination of sodium and potassium in biodiesel by flame atomic emission spectrometry, with dissolution in ethanol as a single sample preparation step. Fuel. 2012;93:381–384. doi:10.1016/j.fuel.2011.08.060

dos Santos EJ, Herrmann AB, Chaves ES, Vechiatto WWD, Schoemberger AC, Frescura VLA, Curtius AJ. Simultaneous determination of Ca, P, Mg, K and Na in biodiesel by axial view inductively coupled plasma optical emission spectrometry with internal standardization after multivariate optimization. J Anal At Spectrom. 2007;22:1300–1303. doi:10.1039/b702563g

Ferreira CC, Costa LM, Barbeira P. Methyl oleate as matrix simulacrum for the simultaneous determination of metals in biodiesel samples by flame atomic emission spectroscopy. Talanta. 2015;138:8–14. doi:10.1016/J.TALANTA.2015.02.006

Raposo JD, Costa LM, Barbeira PJS. Simultaneous determination of na, k and ca in biodiesel by flame atomic emission spectrometry. J Braz Chem Soc. 2015;26(1):147–155. doi:10.5935/0103-5053.20140231

Chaves ES, Saint' Pierre TD, Dos Santos EJ, Tormen L, Bascuñan VLAF, Curtius AJ. Determination of Na and K in biodiesel by flame atomic emission spectrometry and microemulsion sample preparation. J Braz Chem Soc. 2008;19(5):856–861. doi:10.1590/S0103-50532008000500008

Lourenço EC, Eyng E, Bittencourt PRS. A simple, rapid and low cost reversed-phase dispersive liquid-liquid microextraction for the determination of Na, K, Ca and Mg in biodiesel. Talanta. 2019;199:1–7. doi:10.1016/j.talanta.2019.02.054

Roveda LM, Corazza M, Raposo J. Recent advances on sample preparation procedures for elemental determination in biodiesel. Increased Biodiesel Efficiency. 2018;127–157. doi:10.1007/978-3-319-73552-8_6

Lepri FG, Chaves ES, Vieira MA, Ribeiro AS, Curtius AJ, DeOliveira LCC, DeCampos RC. Determination of trace elements in vegetable oils and biodiesel by atomic spectrometric techniques – a review. Appl Spectrosc Rev. 2011;46:175–206. doi:10.1080/05704928.2010.529628

Rich CI. Elemental analysis by flame photometry. In C. A. Black et aI. (ed.) Methods of soil analysis, Part 2. Am. Soc. of Agron., Inc., Madison, Wis. 1965;849–865. doi:10.2134/agronmonogr9.2.c3

Hayes C. Atomic Spectroscopy, forestry and wood products applications encyclopedia of spectroscopy and spectrometry (Third Edition). 2017;96–104. doi:10.1016/B978-0-12-803224-4.00153-9

Sparks DL, Page AL, Helmke PA, Loeppert RH. Methods of soil analysis. Part 3 – Chemical methods. Madison WI: Soil Science Society of America, American Society of Agronomy, 1996. doi:10.2136/sssabookser5.3

Kumar U, Mishra VN, Kumar N, Rathiya GR. Methods of Soil Analysis. Kalyani Publishers, Ludhiana, 2018a; 17–22.

Jofré FC, Perez M, Kloster N, Savio M. Analytical methods assessment for exchangeable cations analysis in soil: MIP OES appraisement. Commun Soil Sci Plant Anal. 2020;51(16):2205–2214. doi:10.1080/00103624.2020.1822377

Jackson ML Soil Chemical Analysis, Prentice Hall (India), New Delhi, 1967.

Hafsi C, Debez A, Abdelly C. Potassium deficiency in plants: Effects and signaling cascades. Acta Physiol Plant. 2014;36(5):1055–1070. doi:10.1007/s11738-014-1491-2

Pengo KC, Peronico VCD, De Souza LCF, Raposo JL. Feasibility of a fast and green chemistry sample preparation procedure for the determination of K and Na in renewable oilseed sources by flame atomic emission spectrometry. Atomic Spectroscopy. 2017;38(3):68–75. doi:10.46770/AS.2017.03.006

Attoe OJ. Rapid photometric determination of potassium and sodium in plant tissues. Soil Sci Soc Am J. 1948;12:131–134. doi:10.2136/SSSAJ1948.036159950012000C0028X

Sahrawat KL. A rapid nondigestion method for determination of potassium in plant tissue. Commun Soil Sci Plant Anal. 1980;11(7):753–757. doi:10.1080/00103628009367077

Sahrawat KL. Potassium determination in grain samples using the nondigestion (dilute HCL extraction) method. Commun Soil Sci Plant Anal. 1984;15(1):81–86. doi:10.1080/00103628409367455

Rosolem CA, Calonego JC, Foloni JSS. Potassium leaching from millet straw as affected by rainfall and potassium rates. Commun Soil Sci Plant Anal. 2005;36(7):1063–1074. doi:10.1081/CSS-200050497

Reddy DD, Veeranki K. Simple and inexpensive water extraction method for assaying potassium concentration in tobacco plant tissue. Commun Soil Sci Plant Anal. 2013;44:962–970. doi:10.1080/00103624.2012.747603

Wright R.J., Stuczynski T.I. Atomic absorption and flame emission spectrometry. In book Methods of Soil Analysis, Part 3: Chemical Methods. 2018;65–90. doi:10.2136/sssabookser5.3.c4

Zhenghong Z. Method for analysis of potassium oxide content in compound fertilizer technology. Chemistry Petrochemical Industry Application. 2013.

Hongjun L. Rapid analysis of K2O content in compound fertilizers. Chemistry Phosphate and Compound Fertilizer. 2003.

Zakiyah Z, Rahmawati C, Fatimah I. Analysis of phosphorus and potassium levels in organic fertilizer. In the integrated laboratory of jombang district agriculture office environmental science. Indones J Chem Res. 2018;3(2):38–48. doi:10.20885/ijcr.vol3.iss2.art1

Xie C, Wen X, Jia Y, Sun S. [Determination of potassium in sodium by flame atomic emission spectroscopy]. Guang Pu Xue Yu Guang Pu Fen Xi. 2001;21(3):366–369.

Beiraghi A, Shokri M. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy. Talanta. 2018;178:616–621. doi:10.1016/j.talanta.2017.08.080

Kalinina AA, Konopkina IA, Vahnina OV, Koroleva IV, Zhogova KB, Annikova SA. Vybor metodik opredelenija litija i bora v litij-bornom splave. Zavodskaja laboratorija. Diagnostika materialov. 2023;89(1):20–27. doi:10.26896/1028-6861-2023-89-1-20-27

Zaytseva PV, Pupyshev AA, Evdokimova OV, Shunyaev KYu. To question of the rhenium determination by flame atomic absorption and atomic emission spectrometry. Analitika i kontrol’ [Analytics and Control]. 2012;16(1):30–38. Russian.




DOI: https://doi.org/10.15826/chimtech.2024.11.1.09

Copyright (c) 2024 Е.А. Zauer

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice