Cover Image

CNT thin films based on epoxy mixtures: fabrication, electrical characteristics

Timur Yumalin, Timur Salikhov, Biltu Mahato, Alexey Shiverskii, Sergey Abaimov, Renat Salikhov

Abstract


The simple scaling of silicon transistors no longer ensures the advantages of high energy efficiency, driving research into nanotechnologies beyond silicon. Specifically, digital circuits based on carbon nanotube (CNT) field-effect transistors promise significant advantages in energy efficiency. However, the inability to perfectly control internal nanoscale defects and the variability of carbon nanotubes hinder the realization of very large-scale integrated systems. In this study, we investigated a novel method for fabricating transistors based on carbon nanotubes (CNTs) using epoxy mixtures, obtained the electrical properties of the transistors, and compared their microstructure and composition via the scanning electron microscopy. The carrier mobility on epoxy-based transistors was 28.87 cm²/V∙s, and the transistor switching frequency was 2.2 MHz. The samples exhibited electrical and physical stability over an extended period of time. The use of carbon nanotubes in epoxy resin as a conducting layer for transistors opens significant prospects in the field of electronics. The CNT-epoxy mixture technology allows for more flexible and rapid fabrication of thin-film transistors compared to classical methods. However, it is not appropriate to speak of a complete replacement; in this study, we present an alternative method for producing thin-film transistors, which may be of interest for specific purposes.

Keywords


carbon nanotubes; epoxy mixtures; thin films; transistors; organic electronics

Full Text:

PDF

References


Soni SK, Thomas B, Kar VR. A comprehensive review on CNTs and CNT-reinforced composites: syntheses, characteristics and applications. Mater Today Commun. 2020;25:101546. doi:10.1016/j.mtcomm.2020.101546

Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionaliza-tion, characterization, and the application. Mater Sci Eng B Adv. 2021;268:115095. doi:10.1016/j.mseb.2021.115095

Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, Shulaker MM. Modern microprocessor built from complemen-tary carbon nanotube transistors. Nature. 2019;572(7771):595–602. doi:10.1038/s41586-019-1493-8

Goh PS, Ismail AF, Ng BC. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Compos Part A Appl S. 2014;56:103–126. doi:10.1016/j.compositesa.2013.10.001

Salah LS, Ouslimani N, Bousba D, Huynen I, Danlée Y, Aksas H. Carbon nanotubes (CNTs) from synthesis to functionalized (CNTs) using conventional and new chemical approaches. J Nanomater. 2021:1–31. doi:10.1155/2021/4972770

Peng HJ, Huang JQ, Zhao MQ, Zhang Q, Cheng XB, Liu XY, Wei F. Nanoarchitectured graphene/CNT@ porous carbon with ex-traordinary electrical conductivity and interconnected mi-cro/mesopores for lithium‐sulfur batteries. Adv Func Mater. 2014;24(19):2772–2781. doi:10.1007/s10853-015-9440-z

Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and func-tionalization of carbon nanotubes for polymer-based nanocom-posites: A review. Compos Part A Appl S. 2010;41(10):1345–1367. doi:10.1016/j.compositesa.2010.07.003

Kausar A, Rafique I, Muhammad B. Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol. 2016;55(11):1167–1191. doi:10.1080/03602559.2016.1163588

Venkataraman A, Amadi EV, Chen Y, Papadopoulos C. Carbon nanotube assembly and integration for applications. Nanoscale Res Lett. 2019;14(1):1–47. doi:10.1186/s11671-019-3046-3

Chen J, Liu B, Gao X, Xu D. A review of the interfacial charac-teristics of polymer nanocomposites containing carbon nano-tubes. RSC Adv. 2018;8(49):28048–28085. doi:10.1039/C8RA04205E

Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, Khalina A. Mechanical performance and applications of CNTs reinforced polymer composites – A review. Nanomaterials Basel. 2021;11(9):2186. doi:10.3390/nano11092186

Shoukat R, Khan MI. Carbon nanotubes: a review on proper-ties, synthesis methods and applications in micro and nano-technology. Microsyst Technol. 2021;1–10. doi:10.1007/s00542-021-05211-6

Wu X, Mu F, Zhao H. Recent progress in the synthesis of gra-phene/CNT composites and the energy-related applications. J Mate Sci Technol. 2020;55:16–34. doi:10.1016/j.jmst.2019.05.063

Cho W, Schulz M, Shanov V. Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon. 2014;72:264–273. doi:10.1016/j.carbon.2014.01.074

Ding D, Wang J, Yu X, Xiao G, Feng C, Xu W, He G. Dispersing of functionalized CNTs in Si–O–C ceramics and electromagnetic wave absorbing and mechanical properties of CNTs/Si–O–C nanocomposites. Ceram Int. 2020;46(4):5407–5419. doi:10.1016/j.ceramint.2019.10.297

Mohd Nurazzi N, Asyraf MM, Khalina A, Abdullah N, Sabarud-din FA, Kamarudin SH, Ahmad S, Mahat AM, Lee CL, Aisyah HA, Norrrahim MNF, Ilyas RA, Harussani MM, Ishak MR, Sapuan SM. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers Basel. 2021;13(7):1047. doi:10.3390/polym13071047

Ramachandran K, Boopalan V, Bear JC, Subramani R. Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nano-composites for aerospace applications: a review. J Mater Sci. 2022;57(6):3923–3953. doi:10.1007/s10853-021-06760-x

Temizel-Sekeryan S, Wu F, Hicks AL. Global scale life cycle environmental impacts of single-and multi-walled carbon nanotube synthesis processes. Int J LCA. 2021;26:656–672. doi:10.1007/s11367-020-01862-1

Norizan MN, Moklis MH, Demon SZN, Halim NA, Samsuri A, Mohamad IS, Abdullah N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020;10(71):43704–43732. doi:10.1039/D0RA09438B

Ferrier DC, Honeychurch, KC. Carbon nanotube (CNT)-based biosensors. Biosensors. 2021;11(12):486. doi:10.3390/bios11120486

Wan H, Cao Y, Lo LW, Zhao J, Sepulveda N, Wang C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano. 2020;14(8):10402–10412. doi:10.1039/C9TA12494B

Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modifi-cation on rheological and mechanical properties of CNT/epoxy composites. Carbon. 2006;44(10):1898–1905. doi:10.1016/j.carbon.2006.02.026

Dehrooyeh S, Vaseghi M, Sohrabian M, Sameezadeh M. Glass fiber/Carbon nanotube/Epoxy hybrid composites: Achieving superior mechanical properties. Mech Mater. 2021;161:104025. doi:10.1016/j.mechmat.2021.104025

Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH. Functionaliza-tion of carbon nanotubes for fabrication of CNT/epoxy nano-composites. Mater Design. 2016;95:1–8. doi:10.1016/j.matdes.2016.01.07

Jakubinek MB, Ashrafi B, Zhang Y, Martinez-Rubi Y, Kingston CT, Johnston A, Simard B. Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace ad-hesives. Compos B Eng. 2015;69:87–93. doi:10.1016/j.compositesb.2014.09.022

Aradhana R, Mohanty S, Nayak SK. A review on epoxy-based electrically conductive adhesives. IJAA. 2020;99:102596. doi:10.1016/j.ijadhadh.2020.102596

Banerjee P, Bhattacharjee Y, Bose S. Lightweight epoxy-based composites for EMI shielding applications. J Electron Mater. 2020;49:1702–1720. doi:10.1007/s11664-019-07687-5

Butt HA, Lomov SV, Akhatov IS, Abaimov SG. Self-diagnostic carbon nanocomposites manufactured from industrial epoxy masterbatches. Compos Struct. 2021;259:113244. doi:10.1016/j.compstruct.2020.113244

Butt HA, Owais M, Sulimov A, Ostrizhiniy D, Lomov SV, Akha-tov IS, Popov YA. CNT/Epoxy-Masterbatch Based Nanocompo-sites: Thermal and Electrical Properties. In: Proceedings of the Conference “IEEE 21st International Conference on Nano-technology (NANO)”. 2021 July 28–30; Montreal, Canada. p. 417–420.

Jafarypouria M, Mahato B, Abaimov SG. Separating Curing and Temperature Effects on the Temperature Coefficient of Re-sistance for a Single-Walled Carbon Nanotube Nanocomposite. Polymers Basel. 2023;15(2):433. doi:10.3390/polym15020433

Salikhov RB, Zilberg RA, Mullagaliev IN, Salikhov TR, Teres YB. Nanocomposite thin film structures based on polyaryleneph-thalide with SWCNT and graphene oxide fillers. Mendeleev Commun. 2022;32(4):520–522. doi:10.1016/j.mencom.2022.07.029

Khuzin AA, Tuktarov AR, Venidiktova OV, Barachevsky VA, Mullagaliev IN, Salikhov TR, SalikhovRB, Khalilov LM, Khuzina LL, Dzhemilev UM. Hybrid molecules based on fullerene C60 and dithienylethenes: synthesis and photochromic properties, optically controlled organic field-effect transistors. Photochem Photobiol. 2022;98(4):815–822. doi:10.1111/php.13539

Tuktarov AR, Salikhov RB, Khuzin AA, Safargalin IN, Mul-lagaliev IN, Venidiktova OV, Valova TM, Barachevsky VA, Dzhemilev UM. Optically controlled field effect transistors based on photochromic spiropyran and fullerene C60 films. Mendeleev Commun. 2019;29(2):160–162. doi:10.1016/j.mencom.2019.03.014

Tuktarov AR, Salikhov RB, Khuzin AA, Popod'ko NR, Safargalin IN, Mullagaliev IN, Dzhemilev UM. Photocontrolled organic field effect transistors based on the fullerene C60 and spiro-pyran hybrid molecule. RSC Adv. 2019;9(13):7505–7508. doi:10.1039/C9RA00939F

Salikhov RB, Lachinov AN, Bunakov AA. Charge transfer in thin polymer films of polyarylenephthalides. Phys Solid State. 2007;49(1):185–188. doi:10.1134/S1063783407010295

Salikhov RB, Lachinov AN, Rakhmeyev RG. Electrical proper-ties of heterostructure Si poly (diphenylenephthalide) Cu. J Appl Phys. 2007;101(5):053706. doi:10.1063/1.2450679

Zang X, Zhou Q, Chang J, Liu Y, Lin L. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng. 2015;132:192–206. doi:10.1016/j.mee.2014.10.023

Han W, Fan S, Li Q, Hu Y. Synthesis of gallium nitride nano-rods through a carbon nanotube-confined reaction. Sci. 1997;277(5330):1287–1289. doi:10.1126/science.277.5330.1287

Sandoval S, Kierkowicz M, Pach E, Ballesteros B, Tobias G. Determination of the length of single-walled carbon nanotubes by scanning electron microscopy. MethodsX. 2018;5:1465–1472. doi:10.1016/j.mex.2018.11.004

Huang X, Farra R, Schlögl R, Willinger MG. Growth and termi-nation dynamics of multiwalled carbon nanotubes at near am-bient pressure: an in situ transmission electron microscopy study. Nano Lett. 2019:19(8):5380–5387. doi:10.1021/acs.nanolett.9b01888

Wu Y, Lin X, Zhang M. Carbon nanotubes for thin film transis-tor: fabrication, properties, and applications. J Nanomater. 2013:64–64. doi:10.1155/2013/627215

Zhao J, Gao Y, Gu W, Wang C, Lin J, Chen Z, Cui Z. Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. J Mater Chem. 2012;22(38):20747–20753. doi:10.1039/C2JM34598F

Salikhov RB, Abdrakhmanov VK, Yumalin TT. Experience of Using Bluetooth Low Energy to Develop a Sensor Data Ex-change System Based on the NRF52832 Microcontroller. In: Proceedings of the Conference “2021 International Ural Con-ference on Electrical Power Engineering (UralCon)”. 2021 Sep 24–26; Magnitogorsk, Russia. p. 229–233.

Bandaru PR. Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol. 2007;7(4–5):1239–1267. doi:10.1166/jnn.2007.307

Bauhofer W, Kovacs JZ. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol. 2009;69(10):1486–1498. doi:10.1016/j.compscitech.2008.06.018

Salikhov TR, Abdrakhmanov VK, Yumalin TT. Application of Organic Sensors in Wireless Environmental Monitoring Sys-tems. In Proceedings of the Conference “2021 International Conference on Electrotechnical Complexes and Systems (ICOECS)”. 2021 Nov 16–18; Ufa, Russia. p. 500–503.

Mustafin AG, Latypova LR, Andriianova AN, Salikhov SM, Usmanova GS, Mullagaliev IN, Salikhov RB. Polymerization of new aniline derivatives: synthesis, characterization and application as sensors. RSC Adv. 2021;11(34):21006–21016. doi:10.1039/D1RA02474D

Gardea F, Lagoudas DC. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos Part B Eng. 2014;56:611–620. doi:10.1016/j.compositesb.2013.08.032

Pejcic B. Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes. Talanta. 2011;85(3):1648–1657. doi:10.1016/j.talanta.2011.06.062

Mondal RK. Novel hybrid nanocarbons/poly (dimethylsiloxane) composites based chemiresistors for real time detection of hazardous aromatic hydrocarbons. Carbon. 2016;100:42–51. doi:10.1016/j.carbon.2015.11.055

Cooper JS. Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water. J Nanopart Res. 2014;16:1–13. doi:10.1007/s11051-013-2173-5




DOI: https://doi.org/10.15826/chimtech.2024.11.2.05

Copyright (c) 2024 Timur Yumalin, Timur Salikhov, Biltu Mahato, Alexey Shiverskii, Sergey Abaimov, Renat Salikhov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice