Cover Image

Photoelectrochemical properties of Pt- and Ir-modified graphitic carbon nitride

Dina V. Markovskaya, Victoria A. Lomakina, Ekaterina A. Kozlova

Abstract


In this work, the photoelectrochemical properties of g-C3N4 modified with Pt, Ir and Ir/Pt bimetallic co-catalysts were studied. All prepared photoelectrodes were tested in a two-electrode cell by cyclic voltammetry, impedance spectroscopy, and the Mott-Schottky method. First, the optimal electrolyte (triethanolamine, NaCl, NaOH, Na2SO4) was selected. The highest photocurrents were recorded in 0.5 M Na2SO4. This electrolyte was used for the subsequent tests. Second, the photoelectrodes loaded with the noble metals are studied. It was shown that in case of monometallic co-catalysts, the deposition of noble metal is accompanied by the decrease of the short-circuit current density and the growth of open-circuit voltage. The simultaneous presence of bimetallic co-catalysts can significantly affect the semiconductor electron structure and photogalvanic properties. Some correlations between the short-circuit current density and the oxidation state of the noble metals were found. A linear correlation between Pt0/Pt0+Pt2+ and Jsc was observed. It was also shown that the presence of iridium in Ir3+ form favors the photocurrent generation. The highest values of the photocurrent were obtained for g-C3N4 and were equal to 0.57 mA/cm2.


Keywords


g-C3N4; noble metals; photoelectrochemistry; visible light; cyclic voltammetry; impedance spectroscopy

Full Text:

PDF

References


Dada M, Popoola P. Recent advances in solar photovoltaic materials and systems for energy storage applications: a review. Beni-Suef Univ J Basic Appl Sci 2023;12(66). doi: 10.1186/s43088-023-00405-5.

Wen J, Xie J, Chen X, Li X. A review on g-C3N4-based photo-catalysts. Appl Surf Sci 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030.

Qin DD, Quan JJ, Duan SF, San Martin J, Lin Y, Zhu X, Yao XQ, Su JZ, Rodríguez-Gutiérrez I, Tao CL, Yan Y. High-performance photoelectrochemical water oxidation with phosphorus-doped and metal phosphide cocatalyst-modified g-C3N4 formation through gas treatment. ChemSusChem 2019;21;12(4):898-907. doi: 10.1002/cssc.201802382.

Amedlous A, Majdoub M, Amaterz E, Anfar Z, Benlhachemi A. Synergistic effect of g-C3N4 nanosheets/Ag3PO4 microcubes as efficient n-p-type heterostructure based photoanode for photoelectrocatalytic dye degradation. J Photochem Photobio A: Chem 2021;409:113127. doi: 10.1016/j.jphotochem.2020.113127.

Zhuang H, Lin J, Xu M, Xu W, Liu X. Construction of g-C3N4-based photoelectrodes towards photoelectrochemical water splitting: A review. J. Alloys Compd 2023;969:172302. doi: 10.1016/j.jallcom.2023.172302.

Xiao J, Zhang X, Li Y. A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting. Int J Hy-drogen Energy 2015;40(30):9080-9087. doi: 10.1016/j.ijhydene.2015.05.122.

Li W, Chu X-S, Wang F, Dang Y-Y, Liu X-Y, Wang H-C, Wang C-y. Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution. Appl Catal B: Environm 2021;288:120034. doi: 10.1016/j.apcatb.2021.120034.

Li H, Xia Z, Chen J, Lei L, Xing J. Constructing ternary CdS/reduced graphene oxide/TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity. Appl Catal B: Environm 2015;168–169:105-113. doi: 10.1016/j.apcatb.2014.12.029.

Liang S, Xia Y, Zhu S, Zheng S, He Y, Bi J, Liu M, Wu L. Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation. Appl Surf Sci 2015;358:304-312. doi: 10.1016/j.apsusc.2015.08.035

Bu Y, Chen Z, Li W. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl Catal B: Environm. 2014;144:622-630. doi: 10.1016/j.apcatb.2013.07.066.

Markovskaya DV, Zhurenok AV, Kozlova EA. Rate of Photo-catalytic Hydrogen Evolution and Photovoltaic Characteris-tics as a Function of the Nature and Concentration of the Electrolyte. Russ J Phys Chem A 2022:96(5):1093-1098. DOI: 10.1134/S003602442205020X

Wang W, Kou X, Li T, Zhao R, Su Y. Tunable hep-tazine/triazine feature of nitrogen deficient graphitic carbon nitride for electronic modulation and boosting photocatalytic hydrogen evolution. J Photochem Photobiol A: Chem 2023;435:114308. doi: 10.1016/j.jphotochem.2022.114308.

Yang H, Sun S, Duan R, Yang B, Yang M, Qi X, Cai C, Yun D, Yang Q, Cui J. Mechanism insight into enhanced photocatalytic hydrogen production by nitrogen vacancy-induced creating built-in electric field in porous graphitic carbon nitride nanosheets. Appl Surf Sci 2023;631:157544. doi: 10.1016/j.apsusc.2023.157544.

Ruan X, Wang Z, Wei Z, Zhang H, Zhang L, Zhao X, Singh DJ, Zhao J, Cui X, Zheng W. Electron cloud density localized graphitic carbon nitride with enhanced optical absorption and carrier separation towards photocatalytic hydrogen evolution. Appl Surf Sci 2022;601:154294. doi: 10.1016/j.apsusc.2022.154294.

Sherryna A, Tahir M, Yamani Z, Alias H. 2D/2D NiAl LDH integrated graphitic carbon nitride with robust interfacial contact for driving photocatalytic hydrogen production. Ma-ter Today: Proceedings. 2023, doi: 10.1016/j.matpr.2023.08.133.

Shi J, Wang H, Nie J, Yang T, Ju C, Pu K, Shi J, Zhao T, Li H, Xue J. Alkali-assisted engineering of ultrathin graphite phase carbon nitride nanosheets with carbon vacancy and cyano group for significantly promoting photocatalytic hydrogen peroxide generation under visible light: Fast electron transfer channel. J Colloid Interf Sci. 2023;643:47-61. doi: 10.1016/j.jcis.2023.03.209.

Chen Y, Lei L, Gong Y, Wang H, Fan H, Wang W. Enhanced electron delocalization on pyrimidine doped graphitic carbon nitride for boosting photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2024;51 A:1058-1068. doi: 10.1016/j.ijhydene.2023.07.147.

Xu M, Meng D, Yousaf AB, Ruan X, Cui X. Superior hydro-philic porous graphitic carbon nitride for enhanced photo-catalytic hydrogen evolution. Mater Lett 2023;350:134888. doi: 10.1016/j.matlet.2023.134888.

Baranowska D, Mijowska E, Zielinska B. Promotion of photocatalytic hydrogen evolution induced by graphitic carbon nitride transformation from 2D flakes to 1D nanowires. Mater Res Bull. 2023;163:112210. doi: 10.1016/j.materresbull.2023.112210.

Yang Y, Li S, Mao Y, Dang Y, Jiao Z, Xu K. Post-functionalization of graphitic carbon nitride for highly effi-cient photocatalytic hydrogen evolution. Journal of Fuel Chemistry and Technology. 2023;51(2):205-214. doi: 10.1016/S1872-5813(22)60036-7.

Li J, Peng H, Luo B, Cao J, Ma L, Jing D. The enhanced photo-catalytic and photothermal effects of Ti3C2 Mxene quantum dot/macroscopic porous graphitic carbon nitride heterojunction for Hydrogen Production. Journal of Colloid and Interface Science. 2023;641:309-318. doi: 10.1016/j.jcis.2023.03.015.

Gao J, Li M, Chen H, Guo L, Li Z, Wang X. Microstructure regulation of graphitic carbon nitride nanotubes via quick thermal polymerization process for photocatalytic hydrogen evolution. J Photochem Photobiol A: Chem 2023;441:114747. doi: 10.1016/j.jphotochem.2023.114747.

Wang T, Wan T, He S, Wang J, Yu M, Jia Y, Tang Q. Facile fabrication of graphitic carbon nitride by solvothermal method with hierarchical structure and high visible light photocatalytic activity. J Taiwan Inst Chem E 2023;145:104773. doi: 10.1016/j.jtice.2023.104773.

Wei J, Zhao R, Luo D, Lu X, Dong W, Huang Y, Cheng X, Ni Y. Atomically precise Ni6(SC2H4Ph)12 nanoclusters on graphitic carbon nitride nanosheets for boosting photocatalytic hydrogen evolution. J Colloid Interf Sci 2023;631(A):212-221. doi: 10.1016/j.jcis.2022.11.010.

Baranowska D, Zielinkiewicz K, Kedzierski T, Mijowska E, Zielinska B. Heterostructure based on exfoliated graphitic carbon nitride coated by porous carbon for photocatalytic H2 evolution. Int J Hydrogen Energy 2022;47(84):35666-35679. doi: 10.1016/j.ijhydene.2022.08.151.

Yu Z, Guan C, Yue X, Xiang Q. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution. Chinese J Catal 2023;50:361-371. doi: 10.1016/S1872-2067(23)64448-1.

Lei L, Fan H, Jia Y, Wu X, Zhong Q, Wang W. Ultrafast charge-transfer at interfaces between 2D graphitic carbon nitride thin film and carbon fiber towards enhanced photocatalytic hydrogen evolution. Appl Surf Sci 2022;606:154938. doi: 10.1016/j.apsusc.2022.154938.

Das B, Devi M, Deb S, Dhar SS. Boosting photocatalytic property of graphitic carbon nitride with metal complex fabrication for efficient degradation of organic pollutants. Chemosphere. 2023;323:138230. doi: 10.1016/j.chemosphere.2023.138230.

Cheng C, Shi J, Mao L, Dong C-L, Huang Y-C, Zong S, Liu J, Shen S, Guo L. Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting. J Colloid Interf Sci 2023;637:271-282. doi: 10.1016/j.jcis.2023.01.098.

Luo M, Jiang G, Yu M, Yan Y, Qin Z, Li Y, Zhang Q. Constructing crystalline homophase carbon nitride S-scheme heterojunctions for efficient photocatalytic hydrogen evolution. J Mater Sci Technol 2023; 161:220-232. doi: 10.1016/j.jmst.2023.03.038.

Chang X, Fan H, Zhu S, Lei L, Wu X, Feng C, Wang W, Ma L. Engineering doping and defect in graphitic carbon nitride by one-pot method for enhanced photocatalytic hydrogen evolution. Ceram Inter 2023;49(4):6729-6738. doi: 10.1016/j.ceramint.2022.10.151.

Xu X, Feng X, Wang W, Song K, Ma D, Zhou Y, Shi Y-W. Con-struction of II-type and Z-scheme binding structure in P-doped graphitic carbon nitride loaded with ZnO and ZnTCPP boosting photocatalytic hydrogen evolution. J Colloid Interf Sci 2023;651:669-677. doi: 10.1016/j.jcis.2023.08.033.

Wang T, Wan T, He S, Wang J, Yu M, Jia Y, Tang Q. Fabrica-tion of structural defects and carboxyl groups on graphitic carbon nitride with enhanced visible light photocatalytic activity. J Environ Chem Eng 2023;11(3):2213-3437. doi: 10.1016/j.jece.2023.110050.

Inoue T, Chuaicham C, Saito N, Ohtani B, Sasaki K. Z-scheme heterojunction of graphitic carbon nitride and calcium ferrite in converter slag for the photocatalytic imidacloprid degradation and hydrogen evolution. J Photochem Photobiol A: Chem 2023;440:114644. doi: 10.1016/j.jphotochem.2023.114644.

Markovskaya DV, Kozlova EA. Application of the Similarity Theory to Analysis of Photocatalytic Hydrogen Production and Photocurrent Generation. Chimica Techno Acta. 2023;10(2):202310203:1-21. DOI: 10.15826/chimtech.2023.10.2.03.

Sidorenko ND, Topchiyan PA, Saraev AA, Gerasimov EY, Zhurenok AV, Vasilchenko DB, Kozlova EA. Bimetallic Pt-IrOx/g-C3N4 photocatalysts for the highly efficient overall water splitting under visible light. Catalysts. 2024;14(4):225. Doi:10.3390/catal14040225.

Markovskaya DV, Zhurenok AV, Cherepanova SV, Kozlova EA. Solid Solutions of CdS and ZnS: Comparing Photocatalytic Activity and Photocurrent Generation. Appl Surf Sci Adv 2021;4:100076:1-8. DOI: 10.1016/j.apsadv.2021.100076.

Kamat PV, Tvrdy K, Baker DR, Padich JG. Beyong photovolta-ics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 2010;110:6664-6688. doi: 10.1016/j.mssp.2021.105717.

Baudys M, Paušová S, Praus P, Brezová V, Dvoranová D, Barbieriková Z, Krýsa J. Graphitic Carbon Nitride for Photocatalytic Air Treatment. Materials 2020;13(13):3038. doi: 10.3390/ma13133038

Ofuonye B, Lee J, Yan M, Sun C, Zuo J-M, Adesida I. Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures. Semiconductor Science and Technology 2014;29(9):095005. DOI: 10.1088/0268-1242/29/9/095005

Fei X, Zhang L, Yu J, Zhu B. DFT Study on Regulating the Electronic Structure and CO2 Reduction Reaction in Bi-OBr/Sulphur-Doped G-C3N4 S-Scheme Heterojunctions. Na-notechnology for Energy Applications. 2021; 3:698351. doi: 10.3389/fnano.2021.698351

Kann S, Takemoto S, Kaneko K, Takahashi I, Sugimoto M, Shinohe T, Fujita S. Electrical properties of α-Ir2O3/α-Ga2O3 pn heterojunction diode and band alignment of the heterostructure. Appl Phys Lett 2018;113:212104. doi: 10.1063/1.5054054

Markovskaya D, Sidorenko N, Zhurenok A, Kozlova E. Study-ing Effects of External Conditions of Electrochemical Meas-urements on the Photoelectrochemical Properties of Semi-conductors: Cyclic Voltammetry, Impedance Spectroscopy, and Mott – Schottky Method. Electrochemical Materials and Technologies 2023;2(2):20232013:1-14. DOI: 10.15826/elmattech.2023.2.013

Kaneko K, Fujita S. Novel p-type oxides with corundum structure for gallium oxide electronics. J Mater Res 2022; 37:651–659. doi: 10.1557/s43578-021-00439-4.




DOI: https://doi.org/10.15826/chimtech.2024.11.2.08

Copyright (c) 2024 Dina V. Markovskaya, Victoria A. Lomakina, Ekaterina A. Kozlova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice