Dispersive surface free energy of adsorbents modified by supramolecular structures of heterocyclic compounds
Abstract
Keywords
Full Text:
PDFReferences
Dorris GM, Gray DG. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J Colloid Inter Sci. 1980;77(2):353–362. doi:10.1016/0021-9797(80)90304-5
Schultz J, Lavielle L, Martin C. The role of the interface in carbon fibre-epoxy composites. J Adhes. 1987;23(1):45–60. doi:10.1080/00218468708080469
Mohammad MA. An equation to calculate the actual Methylene middle parameter as a function of temperature. J Chromatogr A. 2015;1408:267–271. doi:10.1016/j.chroma.2015.07.003
Kondor A, Quellet C, Dallos A. Surface characterization of standard cotton fibres and determination of adsorption isotherms of fragrances by IGC. Surf Interface Anal. 2015;47:1040–1050. doi:10.1002/sia.5811
Shi B, Wang Y, Jia L. Comparison of Dorris–Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography. J Chromatogr A. 2011;1218:860–862. doi:10.1016/j.chroma.2010.12.050
Karakehya N, Bilgiç C. Inverse gas chromatographic determination of the surface energy of PMMA and PMMA/organophilic montmorillonite nanocomposites. Surf Interface Anal. 2016;48(7):519–521. doi:10.1002/sia.5969
Kondor A, Dallos A. Adsorption isotherms of some alkyl aromatic hydrocarbons and surface energies on partially dealuminated Y faujasite zeolite by inverse gas chromatography. J Chromatogr A. 2014;1362:250–261. doi:10.1016/j.chroma.2014.08.047
Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA. Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci. 2013;405:85–95. doi:10.1016/j.jcis.2013.05.033
Kumar BP, Ramanaiah S, Reddy TM, Reddy KS. Surface thermodynamics of Efavirenz and a blend of Efavirenz with cellulose acetate propionate by inverse gas chromatography. Surf Interface Anal. 2016;48:4–9. doi:10.1002/sia.5872
Gutiérrez Ia, Díaz E, Vega A, et al. Hydrocarbons adsorption on metal trimesate MOFs: Inverse gas chromatography and immersion calorimetry studies. Thermochim Acta. 2015;602:36–42. doi:10.1016/j.tca.2015.01.007
Lapcík L, Lapcíková B, Otyepková E, et al. Surface energy analysis (SEA) and rheology of powder milk dairy products. Food Chem. 2015;174:25–30. doi:10.1016/j.foodchem.2014.11.017
Legras A, Kondor A, Alcock M, Heitzmann MT, Truss RW. Inverse gas chromatography for natural fibre characterisation: dispersive and acid-base distribution profiles of the surface energy. Cellulose. 2017;24(11):4691–4700. doi:10.1007/s10570-017-1443-2
Rückriem M, Inayat A, Enke D, Gläser R, Einicke W-D, Rockmann R. Inverse gas chromatography for determining the dispersive surface energy of porous silica. Coll Surf A. 2010;357(1-3):21–26. doi:10.1016/j.colsurfa.2009.12.001
Gamelas JAF, Martins AG. Surface properties of carbonated and non-carbonated hydroxyapatites obtained after bone calcination at different temperatures. Coll Surf A. 2015;478:62–70. doi:10.1016/j.colsurfa.2015.03.044
Papageorgiou AC, S.Fischer, Reichert J, et al. Chemical transformations drive complex self-assembly of uracil on close-packed coinage metal surfaces. ACS Nano. 2012;6(3):2477–2486. doi: 10.1021/nn204863p
Dretschkow T, Dakkouri AS, Wandlowski T. In-situ scanning tunneling microscopy study of uracil on Au(111) and Au(100). Langmuir. 1997;13:2843–2856. doi:10.1021/la970026c
Reck G, Kretschmer RG, Kutschabsky L, Pritzkow W. POSIT: a method for structure determination of small partially known molecules from powder diffraction data. Structure of 6-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione (6-methyluracil). Acta Crystallography, Section A: Found Crystallography. 1988;A44(4):417–421. doi:10.1107/S0108767388000315
Cavallini M, Aloisi G, Bracali M, Guidelli R. An in situ STM investigation of uracil on Ag(111). J. Electroanal. Chem. 1998;444:75–81. doi:10.1016/S0022-0728(97)00560-3
Li W-H, Haiss W, Floate S, Nichols RJ. In-situ infrared spectroscopic and scanning tunneling microscopy investigations of the chemisorption phases of uracil, thymine, and 3-methyl uracil on Au(111) electrodes. Langmuir. 1999;15:4875–4883. doi:10.1021/la9815594
Gardener JA, Shvarova OY, Briggs GAD, Castell MR. Intricate hydrogen-bonded networks: binary and ternary combinations of uracil, PTCDI, and melamine. J Phys Chem C. 2010;114:5859–5866. doi:10.1021/jp9113249
Fallon L. Crystal and molecular structure of 5-fluorouracil. Acta Crystallography, Section B 1973;29(11):2549–2556. doi:10.1107/S0567740873006989
Kannappan K, Werblowsky TL, Rim KT, Berne BJ, Flynn GW. An experimental and theoretical study of the formation of nanostructures of self-assembled cyanuric acid through hydrogen bond networks on graphite. J Phys Chem B. 2007;111:6634-6642. doi:10.1021/jp0706984
Zhang H-M, Xie Z-X, Long L-S, et al. One-step preparation of large-scale self-assembled monolayers of cyanuric acid and melamine supramolecular species on Au(111) surfaces. J Phys Chem C. 2008;112:4209–4218. doi:10.1021/jp076916a
Temprano I, Thomas G, Haq S, et al. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces. J Chem Phys. 2015;142(10). doi:10.1063/1.4907721
Kalkan F, Mehlhorn M, Morgenstern K. A switch based on self-assembled thymine. J Phys Cond Matt. 2012;24(39). doi:10.1088/0953-8984/24/39/394010
Zhao Y, Wang J. How to obtain high-quality and high-stability interfacial organic layer: insights from the PTCDA self-assembly. J Phys Chem C. 2017;121(8). doi:10.1021/acs.jpclett.5b02147
Shin D, Wei Z, Shim H, Lee G. Adsorption and ordering of PTCDA on various reconstruction surfaces of In/Si(1 1 1). Appl Surf Sci. 2016;372:87–92. doi:10.1016/j.apsusc.2016.03.033
Godlewski S, Tekiel A, Piskorz W, et al. Supramolecular ordering of PTCDA molecules: The key role of dispersion forces in an unusual transition from physisorbed into chemisorbed state. ACS Nano. 2012;6(10):8536–8545. doi:10.1021/nn303546m
Gus’kov VY, Gainullina YY, Ivanov SP, Kudasheva FK. Properties of the surface of a porous polymer modified with 5-fluorouracil, according to data of gas chromatography. Russ. J Phys Chem A. 2014;88(6):1042–1046. doi:10.1134/S0036024414060144
Gus’kov VY, Gainullina YY, Ivanov SP, Kudasheva FK. Porous polymer adsorbents modified with uracil. Prot. Met. Phys. Chem. Surf. 2014;50:55–58. doi:10.1134/S2070205114010055
Gus’kov VY, Gainullina YY, Ivanov SP, Kudasheva FK. Thermodynamics of organic molecules adsorption on modified by 5-hydroxy-6-methyluracil sorbents by inverse gas chromatography. J. Chromatogr. A. 2014;1356:230–235. doi:10.1016/j.chroma.2014.06.045
Gus’kov VY, Ivanov SP, Khabibullina RA, Garafutdinov RR, Kudasheva FK. Gas chromatographic investigation of the properties of a styrene–divinylbenzene copolymer modified by 5-hydroxy-6-methyluracil. Russ J Phys Chem A. 2012;86(3):475–478. doi:10.1134/S0036024412030132
Thielmann F. Introduction into the characterisation of porous materials by inverse gas chromatography. J Chromatogr A. 2004;1037:115–123. doi:10.1016/j.chroma.2004.03.060
Charmas B, Leboda R. Effect of surface heterogeneity on adsorption on solid surfaces. Application of inverse gas chromatography in the studies of energetic heterogeneity of adsorbents. J Chromatogr A. 2000;886:133–152. doi:10.1016/S0021-9673(00)00432-5
Ho R, Heng JYY. A review of inverse gas chromatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids. KONA Powder Particle J. 2013(30):164–180. doi:10.14356/kona.2013016
Larionov OG, Petrenko VV, Platonova NP. Determination of contributions of different types of solute-sorbent interactions in gas-adsorption chromatography by linear regression of adsorption energies. J Chromatogr. A. 1991;537:295–303. doi:10.1016/S0021-9673(01)88903-2
Vitha M, Carr PW. The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A. 2006;1126:143–194. doi:10.1016/j.chroma.2006.06.074
Gus’kov VY, Ganieva AG, Kudasheva FK. The surface polarity of porous polymers at different coverages. J Appl Polym Sci. 2016;133(44):10563–10569. doi:10.1002/app.44146
Mohammadi-Jam S, Waters KE. Inverse gas chromatography applications: A review. Adv Coll Int Sci. 2014;212:21–44. doi:10.1016/j.cis.2014.07.002
Gamelas JAF, Pedrosa J, Lourenço AF, Ferreira PJ. Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography. Coll Surf A. 2015;469:36–41. doi:10.1016/j.colsurfa.2014.12.058
Bendada K, Hamdi B, Boudriche L, Balard H, Calvet R. Surface characterization of reservoir rocks by inverse gas chromatography: Effect of a surfactant. Coll Surf A. 2016;504:75–85. doi:10.1016/j.colsurfa.2016.05.047
Cerefolini GF, Rudzinski W. Theoretical principles of single- and mixed-gas adsorption equilibria on heterogeneous solid surfaces. In: Rudzinski W, Steele WA, Zgrablich G, eds. Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces. Amsterdam: Elsevier; 1997:1–104. doi:10.1016/S0167-2991(97)80062-6
Leonidov NB, Zorkyi PM, Masunov AE. Structure and Bioneequivalence of Polymorphic Forms of Methyluracil. Russ J Phys Chem A. 1993;67(12):2464–2468.
DOI: https://doi.org/10.15826/chimtech.2024.11.2.10
Copyright (c) 2024 Vladimir Yu. Guskov, Yulia Yur. Gainullina, Alina F. Gabdulmanova, Albina N. Gareeva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice