Dispersive surface free energy of adsorbents modified by supramolecular structures of heterocyclic compounds

Vladimir Yu. Guskov, Yulia Yu. Gainullina, Alina F. Gabdulmanova, Albina N. Gareeva

Abstract


In the present work, the dispersive surface free energy was calculated by Dorris-Gray method for 30 samples of adsorbents modified with chiral supramolecular structures of uracil, 6-methyluracil, 5-hydroxy-6-methyluracil, 5-fluorouracil, thymine, melamine, cyanuric and barbirutic acids, and perylene-3,4,9,10-tetracarboxylic dianhydride. It was shown that the homologous series of n-alkanes is better suited for measuring dispersive surface free energy than the homologous series of alcohols. It was established that the classical Dorris-Gray method does not allow obtaining well interpretable data for the objects studied. This is due to a noticeable effect that inductive interactions of a polar surface as an inductor with nonpolar alkane molecules have on the calculated values. We suggested to modify the Dorris-Gray method, making it possible to obtain data on the dispersive component of the free energy of adsorption. It was shown that the changes in dispersive surface free energy as a result of the modification correlate well with data on the structure and properties of supramolecular ensembles of the modifiers used. The results obtained can be used to predict the enantioselectivity of chiral adsorbents.

Keywords


dispersive surface free energy; Dorris–Gray method; linear free energy relationship; supramolecular structure; chiral 2D surfaces

Full Text:

PDF

References


Dorris GM, Gray DG. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J Colloid Inter Sci. 1980;77(2):353–362. doi:10.1016/0021-9797(80)90304-5

Schultz J, Lavielle L, Martin C. The role of the interface in carbon fibre-epoxy composites. J Adhes. 1987;23(1):45–60. doi:10.1080/00218468708080469

Mohammad MA. An equation to calculate the actual Methylene middle parameter as a function of temperature. J Chromatogr A. 2015;1408:267–271. doi:10.1016/j.chroma.2015.07.003

Kondor A, Quellet C, Dallos A. Surface characterization of standard cotton fibres and determination of adsorption isotherms of fragrances by IGC. Surf Interface Anal. 2015;47:1040–1050. doi:10.1002/sia.5811

Shi B, Wang Y, Jia L. Comparison of Dorris–Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography. J Chromatogr A. 2011;1218:860–862. doi:10.1016/j.chroma.2010.12.050

Karakehya N, Bilgiç C. Inverse gas chromatographic determination of the surface energy of PMMA and PMMA/organophilic montmorillonite nanocomposites. Surf Interface Anal. 2016;48(7):519–521. doi:10.1002/sia.5969

Kondor A, Dallos A. Adsorption isotherms of some alkyl aromatic hydrocarbons and surface energies on partially dealuminated Y faujasite zeolite by inverse gas chromatography. J Chromatogr A. 2014;1362:250–261. doi:10.1016/j.chroma.2014.08.047

Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA. Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci. 2013;405:85–95. doi:10.1016/j.jcis.2013.05.033

Kumar BP, Ramanaiah S, Reddy TM, Reddy KS. Surface thermodynamics of Efavirenz and a blend of Efavirenz with cellulose acetate propionate by inverse gas chromatography. Surf Interface Anal. 2016;48:4–9. doi:10.1002/sia.5872

Gutiérrez Ia, Díaz E, Vega A, et al. Hydrocarbons adsorption on metal trimesate MOFs: Inverse gas chromatography and immersion calorimetry studies. Thermochim Acta. 2015;602:36–42. doi:10.1016/j.tca.2015.01.007

Lapcík L, Lapcíková B, Otyepková E, et al. Surface energy analysis (SEA) and rheology of powder milk dairy products. Food Chem. 2015;174:25–30. doi:10.1016/j.foodchem.2014.11.017

Legras A, Kondor A, Alcock M, Heitzmann MT, Truss RW. Inverse gas chromatography for natural fibre characterisation: dispersive and acid-base distribution profiles of the surface energy. Cellulose. 2017;24(11):4691–4700. doi:10.1007/s10570-017-1443-2

Rückriem M, Inayat A, Enke D, Gläser R, Einicke W-D, Rockmann R. Inverse gas chromatography for determining the dispersive surface energy of porous silica. Coll Surf A. 2010;357(1-3):21–26. doi:10.1016/j.colsurfa.2009.12.001

Gamelas JAF, Martins AG. Surface properties of carbonated and non-carbonated hydroxyapatites obtained after bone calcination at different temperatures. Coll Surf A. 2015;478:62–70. doi:10.1016/j.colsurfa.2015.03.044

Papageorgiou AC, S.Fischer, Reichert J, et al. Chemical transformations drive complex self-assembly of uracil on close-packed coinage metal surfaces. ACS Nano. 2012;6(3):2477–2486. doi: 10.1021/nn204863p

Dretschkow T, Dakkouri AS, Wandlowski T. In-situ scanning tunneling microscopy study of uracil on Au(111) and Au(100). Langmuir. 1997;13:2843–2856. doi:10.1021/la970026c

Reck G, Kretschmer RG, Kutschabsky L, Pritzkow W. POSIT: a method for structure determination of small partially known molecules from powder diffraction data. Structure of 6-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione (6-methyluracil). Acta Crystallography, Section A: Found Crystallography. 1988;A44(4):417–421. doi:10.1107/S0108767388000315

Cavallini M, Aloisi G, Bracali M, Guidelli R. An in situ STM investigation of uracil on Ag(111). J. Electroanal. Chem. 1998;444:75–81. doi:10.1016/S0022-0728(97)00560-3

Li W-H, Haiss W, Floate S, Nichols RJ. In-situ infrared spectroscopic and scanning tunneling microscopy investigations of the chemisorption phases of uracil, thymine, and 3-methyl uracil on Au(111) electrodes. Langmuir. 1999;15:4875–4883. doi:10.1021/la9815594

Gardener JA, Shvarova OY, Briggs GAD, Castell MR. Intricate hydrogen-bonded networks: binary and ternary combinations of uracil, PTCDI, and melamine. J Phys Chem C. 2010;114:5859–5866. doi:10.1021/jp9113249

Fallon L. Crystal and molecular structure of 5-fluorouracil. Acta Crystallography, Section B 1973;29(11):2549–2556. doi:10.1107/S0567740873006989

Kannappan K, Werblowsky TL, Rim KT, Berne BJ, Flynn GW. An experimental and theoretical study of the formation of nanostructures of self-assembled cyanuric acid through hydrogen bond networks on graphite. J Phys Chem B. 2007;111:6634-6642. doi:10.1021/jp0706984

Zhang H-M, Xie Z-X, Long L-S, et al. One-step preparation of large-scale self-assembled monolayers of cyanuric acid and melamine supramolecular species on Au(111) surfaces. J Phys Chem C. 2008;112:4209–4218. doi:10.1021/jp076916a

Temprano I, Thomas G, Haq S, et al. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces. J Chem Phys. 2015;142(10). doi:10.1063/1.4907721

Kalkan F, Mehlhorn M, Morgenstern K. A switch based on self-assembled thymine. J Phys Cond Matt. 2012;24(39). doi:10.1088/0953-8984/24/39/394010

Zhao Y, Wang J. How to obtain high-quality and high-stability interfacial organic layer: insights from the PTCDA self-assembly. J Phys Chem C. 2017;121(8). doi:10.1021/acs.jpclett.5b02147

Shin D, Wei Z, Shim H, Lee G. Adsorption and ordering of PTCDA on various reconstruction surfaces of In/Si(1 1 1). Appl Surf Sci. 2016;372:87–92. doi:10.1016/j.apsusc.2016.03.033

Godlewski S, Tekiel A, Piskorz W, et al. Supramolecular ordering of PTCDA molecules: The key role of dispersion forces in an unusual transition from physisorbed into chemisorbed state. ACS Nano. 2012;6(10):8536–8545. doi:10.1021/nn303546m

Gus’kov VY, Gainullina YY, Ivanov SP, Kudasheva FK. Properties of the surface of a porous polymer modified with 5-fluorouracil, according to data of gas chromatography. Russ. J Phys Chem A. 2014;88(6):1042–1046. doi:10.1134/S0036024414060144

Gus’kov VY, Gainullina YY, Ivanov SP, Kudasheva FK. Porous polymer adsorbents modified with uracil. Prot. Met. Phys. Chem. Surf. 2014;50:55–58. doi:10.1134/S2070205114010055

Gus’kov VY, Gainullina YY, Ivanov SP, Kudasheva FK. Thermodynamics of organic molecules adsorption on modified by 5-hydroxy-6-methyluracil sorbents by inverse gas chromatography. J. Chromatogr. A. 2014;1356:230–235. doi:10.1016/j.chroma.2014.06.045

Gus’kov VY, Ivanov SP, Khabibullina RA, Garafutdinov RR, Kudasheva FK. Gas chromatographic investigation of the properties of a styrene–divinylbenzene copolymer modified by 5-hydroxy-6-methyluracil. Russ J Phys Chem A. 2012;86(3):475–478. doi:10.1134/S0036024412030132

Thielmann F. Introduction into the characterisation of porous materials by inverse gas chromatography. J Chromatogr A. 2004;1037:115–123. doi:10.1016/j.chroma.2004.03.060

Charmas B, Leboda R. Effect of surface heterogeneity on adsorption on solid surfaces. Application of inverse gas chromatography in the studies of energetic heterogeneity of adsorbents. J Chromatogr A. 2000;886:133–152. doi:10.1016/S0021-9673(00)00432-5

Ho R, Heng JYY. A review of inverse gas chromatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids. KONA Powder Particle J. 2013(30):164–180. doi:10.14356/kona.2013016

Larionov OG, Petrenko VV, Platonova NP. Determination of contributions of different types of solute-sorbent interactions in gas-adsorption chromatography by linear regression of adsorption energies. J Chromatogr. A. 1991;537:295–303. doi:10.1016/S0021-9673(01)88903-2

Vitha M, Carr PW. The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A. 2006;1126:143–194. doi:10.1016/j.chroma.2006.06.074

Gus’kov VY, Ganieva AG, Kudasheva FK. The surface polarity of porous polymers at different coverages. J Appl Polym Sci. 2016;133(44):10563–10569. doi:10.1002/app.44146

Mohammadi-Jam S, Waters KE. Inverse gas chromatography applications: A review. Adv Coll Int Sci. 2014;212:21–44. doi:10.1016/j.cis.2014.07.002

Gamelas JAF, Pedrosa J, Lourenço AF, Ferreira PJ. Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography. Coll Surf A. 2015;469:36–41. doi:10.1016/j.colsurfa.2014.12.058

Bendada K, Hamdi B, Boudriche L, Balard H, Calvet R. Surface characterization of reservoir rocks by inverse gas chromatography: Effect of a surfactant. Coll Surf A. 2016;504:75–85. doi:10.1016/j.colsurfa.2016.05.047

Cerefolini GF, Rudzinski W. Theoretical principles of single- and mixed-gas adsorption equilibria on heterogeneous solid surfaces. In: Rudzinski W, Steele WA, Zgrablich G, eds. Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces. Amsterdam: Elsevier; 1997:1–104. doi:10.1016/S0167-2991(97)80062-6

Leonidov NB, Zorkyi PM, Masunov AE. Structure and Bioneequivalence of Polymorphic Forms of Methyluracil. Russ J Phys Chem A. 1993;67(12):2464–2468.




DOI: https://doi.org/10.15826/chimtech.2024.11.2.10

Copyright (c) 2024 Vladimir Yu. Guskov, Yulia Yur. Gainullina, Alina F. Gabdulmanova, Albina N. Gareeva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice