Mechanosynthesis of pentiptycene-based polyesters and polycarbonates
Abstract
Iptycenes are common building blocks for the small-molecules or polymer-based chemosensors and fluorophores. In addition, iptycene derivatives are widely presented in polymers of intrinsic microporosity (PIMs) as materials for the separation and purification technologies. In this manuscript we wish to report a mechanochemical approach to pentiptycene-based polyesters and polycarbonates as, possibly, new representatives of PIMs. Our approach involves the polycondensation reaction between 5,7,12,14-tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene-6,13-diol (pentiptycene-6,13-diol) and triphosgene or oxalyl chloride under ball-milling conditions. The obtained polymers were characterized by means of 1H NMR- and IR-spectroscopy. As the last step, the fluorescence “turn-off” response of pentiptycene-6,13-diol and two pentiptycene-based polymers towards nitroanalytes (2,4-dinitrotioluene (DNT) and 2,4,6-trinitrophenole (picric acid, PA)) was investigated, and Stern-Volmer constants as high as 1o4 M–1 were observed.
Keywords
Full Text:
PDFReferences
McKeown NB. Polymers of intrinsic microporosity (PIMs). Polymer. 2020;202:122736. doi:10.1016/j.polymer.2020.122736
McKeown NB. Polymers of intrinsic microporosity. ISRN. 2012;2012:1-16. doi:10.5402/2012/513986
Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE. Polymers of Intrinsic Microporosity (PIMs): Robust, Solution-Processable, Organic Nanoporous Materials. Chem Commun. 2004;2:230–231. doi:10.1039/b311764b
Low ZX, Budd PM, McKeown NB, Patterson DA. Gas Permea-tion Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chem Rev. 2018;118(12):5871–5911. doi:10.1021/acs.chemrev.7b00629
Ghanem BS, McKeown NB, Budd PM, Al-Harbi NM, Fritsch D, Heinrich K, Yampolskii Y. Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides. Macromole-cules. 2009;42(20):7881-7888. doi:10.1021/ma901430q
Rogan Y, Starannikova L, Ryzhikh V, Yampolskii Y, Bernar-do P, Bazzarelli F, McKeown NB. Synthesis and gas permea-tion properties of novel spirobisindane-based polyimides of intrinsic microporosity. Polymer Chem. 2013;4(13):3813–3820. doi:10.1039/C3PY00451A
Ma X, Swaidan R, Belmabkhout Y, Zhu Y, Litwiller E, Jouiad M, Han Y. Synthesis and gas transport properties of hydrox-yl-functionalized polyimides with intrinsic microporosity. Macromolecules. 2012;45(9):3841–3849. doi:10.1021/ma300549m
Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, McKeown NB. An efficient polymer molecular sieve for membrane gas separations. Sci. 2013;339(6117):303–307. doi:10.1126/science.1228032
Ma X, Ghanem B, Salines O, Litwiller E, Pinnau I. Synthesis and effect of physical aging on gas transport properties of a microporous polyimide derived from a novel spirobifluo-rene-based dianhydride. ACS Macro Lett. 2015;4(2):231–235. doi:10.1021/acsmacrolett.5b00009
Ma X, Salinas O, Litwiller E, Pinnau I. Novel spirobifluo-rene-and dibromospirobifluorene-based polyimides of in-trinsic microporosity for gas separation applications. Mac-romolecules. 2013;46(24):9618–9624. doi:10.1021/ma402033z
Wang Z, Wang D, Zhang F, Jin J. Troger’s base-based mi-croporous polyimide membranes for high-performance gas separation. ACS Macro Lett. 2014;3(7):597–601. doi:10.1021/mz500184z
Zhuang Y, Seong JG, Do YS, Jo HJ, Cui Z, Lee J, Guiver MD. Intrinsically microporous soluble polyimides incorporating Tröger’s base for membrane gas separation. Macromole-cules. 2014;47(10):3254–3262. doi:10.1021/ma5007073
Swaidan R, Al-Saeedi M, Ghanem B, Litwiller E, Pinnau I. Rational design of intrinsically ultramicroporous polyi-mides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes. Macromolecules. 2014;47(15):5104–5114. doi:10.1021/ma5009226
Ghanem BS, Swaidan R, Litwiller E, Pinnau I. Ultra‐microporous triptycene‐based polyimide membranes for high‐performance gas separation. Adv Mater. 2014;26(22):3688–3692. doi:10.1002/adma.201306229
Swager TM. Iptycenes in the design of high performance polymers. Acc Chem Res. 2008;41(9):1181–1189. doi:10.1021/ar800107v
Luo S, Liu Q, Zhang B, Wiegand JR, Freeman BD, Guo R. Pentiptycene-based polyimides with hierarchically con-trolled molecular cavity architecture for efficient mem-brane gas separation. J Membr Sci. 2015;480:20–30. doi:10.1016/j.memsci.2015.01.043
Nozari M, Kaur M, Jasinski JP, Addison AW, Arabi Shamsabadi A, Soroush M. 5, 7, 12, 14-Tetrahydro-5, 14: 7, 12-bis ([1, 2] benzeno) pentacene-6, 13-diol dimethylfor-mamide disolvate. IUCrData. 2016;1(7):x161130. doi:10.1107/S2414314616011305
Shamsabadi AA, Seidi F, Nozari M, Soroush M. A new pentiptycene‐based dianhydride and its high‐free‐volume polymer for carbon dioxide removal. ChemSusChem. 2018;11(2):472–482. doi:10.1002/cssc.201701491
Corrado TJ, Huang Z, Huang D, Wamble N, Luo T, Guo R. Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance. PNAS. 2021;118(37):e2022204118. doi:10.1073/pnas.2022204118
Tan L, Tan B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem Soc Rev. 2017;46(11):3322–3356. doi:10.1039/C6CS00851H
Al-Ithawi WKA, Khasanov AF, Valieva MI, Baklykov AV, Chistiakov KA, Ladin ED, Kovalev IS, Nikonov IN, Kim GA, Vadim AP, Kopchuk DS, Wang Z, Zyryanov GV. (Mecha-no)synthesis of azomethine-and terpyridine-linkeddiketopyrrolopyrrole-basedpolymers. Chimica Tech-no Acta. 2023;10(2):202310204. doi:10.15826/chimtech.2023.10.2.04
Al-Sammarraie ESA, Al-Ithawi WAK, Baklykov AV, Platonov VA, Altobee AMK, Glebov NS, Khasanov AF, Kovalev IS, Ni-konov IL, Kopchuk DS, Sapozhnikova IM, Sabirova TM, Jin Y, Zyryanov GV, Rusinov VL. (Mechano)chemical modification of polyvinyl chloride with azole-based drugs. Chimica Techno Acta. 2024;11(2):202411211. doi:10.15826/chimtech.2024.11.2.11
Zhu XZ, Chen CF. Iptycene quinones: Synthesis and struc-ture. J Org Chem. 2005;70(3):917–924. doi:10.1021/jo0483015
Cao J, Lu HY, Chen CF. Synthesis, structures, and properties of peripheral o-dimethoxy-substituted pentiptycene qui-nones and their o-quinone derivatives. Tetrahedron. 2009;65(39):8104–8112. doi:10.1016/j.tet.2009.07.090
Wang T, Gao F, Li S, Phillip WA, Guo R. Water and salt transport properties of pentiptycene-containing sulfonated polysulfones for desalination membrane applications. J Memb Sci. 2021;640:119806. doi:10.1016/j.memsci.2021.119806
Luo S, Zhang Q, Zhang Y, Weaver KP, Phillip WA, Guo R. Facile synthesis of a pentiptycene-based highly mi-croporous organic polymer for gas storage and water treatment. ACS Appl Mater Interfaces. 2018;10(17):15174–15182. doi:10.1021/acsami.8b02566
Al-Ithawi WK, Aluru R, Baklykov AV, Khasanov AF, Kovalev, IS, Nikonov IL, Kopchuk DS, Novikov AS, Santra S, Zyryanov GV, Ranu, BC. Mechanosynthesis of Polyureas and Studies of Their Responses to Anions. Polymers. 2023;15(20):4160. doi:10.3390/polym15204160
McQuade DT, Hegedus AH, Swager TM. Signal Amplifica-tion of a “Turn-On” Sensor: Harvesting the Light Captured by a Conjugated Polymer. J Am Chem Soc. 2000;122(49):12389–12390. doi:10.1021/ja003255l
DOI: https://doi.org/10.15826/chimtech.2024.11.3.06
Copyright (c) 2024 Wahab A.K.Al-Ithawi, Eman S.A. Al-Sammarraie, Artem V. Baklykov, Vadim A. Platonov, Aqeel M.K. Altobee, Nikita S. Glebov, Albert F. Khasanov, Igor S. Kovalev, Igor I. Nikonov, Dmitry S. Kopchuk, Grigory V. Zyryanov
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International