Cover Image

Investigation of the reaction of dimedone with aromatic aldehydes in the presence of copper oxide nanoparticles

Ravina Meena, Harshita Sachdeva

Abstract


Variously substituted methylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives were synthesized in 83–96% yield by the reaction of substituted benzaldehyde with 5, 5-dimethyl-1, 3-cyclohexanedione in the presence of CuO nanoparticles (NPs). Tandem grinding involves Knoevenagel condensation followed by the Michael addition in sequence for the formation of 2, 2’-arylmethylenebis (3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) derivatives. Copper oxide NPs were synthesized by sol-gel method. The characterization of CuO NPs was done on the basis of PXRD, FTIR, SEM and TEM techniques. The synthesized derivatives were characterized on the basis of spectral analyses and corresponding melting points reported in the literature.

Keywords


biscyclohexenone; solvent-free; recyclable; heterogeneous; CuO nanoparticles; Grindstone chemistry

Full Text:

PDF

References


Clark JH, Macquarrie DJ. Environmentally friendly catalytic methods. Chem Soc Rev. 1996;25(5):303–310. doi:10.1039/CS9962500303

Sápi A, Rajkumar T, Kiss J, Kukovecz Á, Kónya Z, Somorjai GA. Metallic nanoparticles in heterogeneous catalysis. Catal Lett. 2021;151:2153–2175. doi:10.1007/s10562-020-03477-5

Astruc D. Introduction: nanoparticles in catalysis. Chem Rev. 2020;120(2):461–463. doi:10.1021/acs.chemrev.8b00696

Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981–5079. doi:10.1021/acs.chemrev.7b00776

Waris A, Din M, Ali A, Ali M, Afridi S, Baset A, Khan AU. A comprehensive review of green synthesis of copper oxide na-noparticles and their diverse biomedical applications. Inorg Chem Commun. 2021;123:108369. doi:10.1016/j.inoche.2020.108369

Vasantharaj S, Sathiyavimal S, Saravanan M, Senthilkumar P, Gnanasekaran K, Shanmugavel M, Manikandan E, Pugazhen-dhi A. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacteri-al activity and dye degradation potential. J Photochem Photo-biol B Biol. 2019;191:143–149. doi:10.1016/j.jphotobiol.2018.12.026

Prasad KP, Dhawale DS, Joseph S, Anand C, Wahab MA, Mano A, Sathish CI, Balasubramanian VV, Sivakumar T, Vinu A. Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor applica-tion. Microporous Mesoporous Mater. 2013;172:77–86. doi:10.1007/s11664-016-4587-1

Saravanakumar K, Sathiyaseelan A, Mariadoss A V, Xiaowen H, Wang MH. Physical and bioactivities of biopolymeric films in-corporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int J Biol Mac-romol. 2020;153:207–214. doi:10.1016/j.ijbiomac.2020.02.250

Rajak R, Saraf M, Kumar P, Natarajan K, Mobin SM. Construc-tion of a Cu-Based Metal–Organic Framework by Employing a Mixed-Ligand Strategy and Its Facile Conversion into Nano-fibrous CuO for Electrochemical Energy Storage Applications. Inorg Chem. 2021;60(22):16986–16995. doi:10.1021/acs.inorgchem.1c02062

Singh P, Singh KR, Singh J, Singh RP. Biogenic synthesis of copper oxide nanoparticles: characterization and biosensing application. ECS Trans. 2022;107(1):20127. doi:10.1149/10701.20127ecst

Chang MH, Liu HS, Tai CY. Preparation of copper oxide nano-particles and its application in nanofluid. Powder Technol. 2011;207(1–3):378–386. doi:10.1016/j.powtec.2010.11.022

Lasfargues M, Stead G, Amjad M, Ding Y, Wen D. In Situ pro-duction of copper oxide nanoparticles in a binary molten salt for concentrated solar power plant applications. Mater. 2017;10(5):537. doi:10.3390/ma10050537

Gnanavel V, Palanichamy V, Roopan SM. Biosynthesis and characterization of copper oxide nanoparticles and its anti-cancer activity on human colon cancer cell lines (HCT-116). J Photochem Photobiol B Biol. 2017;171:133–138. doi:10.1016/j.jphotobiol.2017.05.001

Chowdhury R, Khan A, Rashid MH. Green synthesis of CuO nanoparticles using Lantana camara flower extract and their potential catalytic activity towards the aza-Michael reaction. RSC Adv. 2020;10(24):14374–14385. doi:10.1039/D0RA01479F

Elahimehr Z, Nemati F, Elhampour A. Synthesis of a magnetic-based yolk-shell nano-reactor: A new class of monofunctional catalyst by Cu0-nanoparticles and its application as a highly effective and green catalyst for A3 coupling reaction. Arab J Chem. 2020;13(1):3372–3382. doi:10.1016/j.arabjc.2018.11.011

Gangaprasad D, Raj JP, Kiranmye T, Sadik SS, Elangovan J. A new paradigm of copper oxide nanoparticles catalyzed reac-tions: Synthesis of 1, 2, 3-triazoles through oxidative azide-olefin cycloaddition. RSC Adv. 2015;5(78):63473–63477. doi:10.1039/C5RA08693K

Zhao J, Niu Z, Fu H, Li Y. Ligand-free hydroboration of alkynes catalyzed by heterogeneous copper powder with high efficien-cy. Chem Commun. 2014;50(16):2058–2060. doi:10.1039/C3CC48670B

Fui CJ, Sarjadi MS, Sarkar SM, Rahman ML. Recent advance-ment of ullmann condensation coupling reaction in the for-mation of aryl-oxygen (CO) bonding by copper-mediated cata-lyst. Catalysts. 2020;10(10):1103. doi:10.3390/catal10101103

Halder M, Islam MM, Ansari Z, Ahammed S, Sen K, Islam SM. Biogenic nano-CuO-catalyzed facile C–N cross-coupling reac-tions: scope and mechanism. ACS Sustain Chem Eng. 2017;5(1):648–657. doi:10.1021/acssuschemeng.6b02013

Džambić A, Muratović S, Veljović E, Softić A, Dautović E, Šljivić M. Evaluation of Antioxidative, Antimicrobial and Cytotoxic Ac-tivity of the Synthetized Arylmethylenbis (3-Hydroxy-5,5-Dimethyl-2- Cyclohexen-1-One) Derivatives. Eur Chem Bull. 2020;9(9):285–290. doi:10.17628/ecb.2020.9.285-290

Amininia A, Pourshamsian, K Sadeghi B. Nano-ZnO Impreg-nated on Starch-A Highly Efficient Heterogeneous Bio-Based Catalyst for One-Pot Synthesis of Pyranopyrimidinone and Xanthene Derivatives as Potential Antibacterial Agents. Russ J Org Chem. 2020;56(7):1279–1288. doi:10.1134/S1070428020070234

Bortolot CS, da SM, Forezi L, Marra RK, Reis MI, Sá BV, Ghasemishahrestani Z, Sola-Penna M, Zancan P, Ferreira VF, de C da, Silva F. Design, synthesis and biological evaluation of 1H-1, 2, 3-triazole-linked-1H-dibenzo [b, h] xanthenes as in-ductors of ROS-mediated apoptosis in the breast cancer cell line MCF-7. Med Chem. 2019;15(2):119–129. doi:10.2174/1573406414666180524071409

Shagufta AI. Recent insight into the biological activities of synthetic xanthone derivatives. Eur J Med Chem. 2016;116:267–280. doi:10.1016/j.ejmech.2016.03.058

Miladiyah I, Jumina J, Haryana SM, Mustofa M. Biological ac-tivity, quantitative structure–activity relationship analysis, and molecular docking of xanthone derivatives as anticancer drugs. Drug Des Devel Ther. 2018;12:149–158. doi:10.2147/DDDT.S149973

Manikandan A, Sivakumar A, Nigam P S, Napoleon A. A Anti-cancer effects of novel tetrahydro-dimethyl-xanthene-diones. Anti-Cancer Agents Med Chem. 2020;20(7):909–916. doi:10.2174/1871520620666200318094138

Banerjee AG, Kothapalli LP, Sharma PA, Thomas AB, Nanda RK, Shrivastava SK, Khatanglekar VV. A facile microwave as-sisted one pot synthesis of novel xanthene derivatives as po-tential anti-inflammatory and analgesic agents. Arab J Chem. 2016;9:S480–S489. doi:10.1016/j.arabjc.2011.06.001

Li JT, Li YW, Song YL, Chen GF. Improved synthesis of 2, 2′-arylmethylene bis (3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives catalyzed by urea under ultrasound. Ultrason Sonochem. 2012;19(1):1–4. doi:10.1016/j.ultsonch.2011.05.001

Mandlimath TR, Umamahesh B, Sathiyanarayanan KI. Rapid one pot synthesis of xanthene derivatives by an efficient and reusable nano-ZnAl2O4–An insight into a new process. J Mol Catal A Chem. 2014;391:198–207. doi:10.1016/j.molcata.2014.04.030

Jin T S, Wang A Q, Ma H, Zhang J S. The reaction of aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione under sol-vent-free grinding conditions. Ind J Chem Sec B. 2006;45B(02):470–474. https://nopr.niscpr.res.in/handle/123456789/6002

Ilangovan A, Malayappasamy S, Muralidharan S. et al. A highly efficient green synthesis of 1, 8-dioxo-octahydroxanthenes. Chem Cent J. 2011;5:81. doi:10.1186/1752-153X-5-81

Suresh DK, Jagir SS. An efficient green protocol for the pro-duction of 1,8-dioxo-octahydroxanthenes in triethylammonium acetate (teaa) a recyclable inexpensive ionic liquid. Rasayan J Chem. 2009;2(4):937–940.

Hekmatshoar R, Kargar M, Mostashari A, Hashemi Z, Goli F. et al. copper octoate: a commercially available and cost-effective homogeneous catalyst for the facile synthesis of 2, 2’-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-ones). J Turk Chem Soc A Chem. 2015;2(4):1–11. doi:10.18596/jotcsa.44600

Gao H, Yang X, Tang X, Yin P and Mao Z. A Brief Synthesis of 2, 2’-Arylmethylene Bis (3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) Catalyzed by TEAOH in Various Solvents. Curr Org Synth. 2019;16(7):1032–1039. doi:10.2174/1570179416666190723122816

Harichandran G, Parameswari P, David Amalraj S, Shanmu-gam P. Preparation of MnO2 nanoparticles and application in the Synthesis of 2, 2’-arylmethylene bis (3-hydroxy-5, 5- dime-thyl-2-cyclohexene-1-one). Int J Innov Res Sci Eng. 2347–3207.

Gupta M, Gupta M. Copper (0) nanoparticles onto silica: A stable and facile catalyst for one-pot synthesis of 2,2'-arylmethylene bis(3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) via cascade Knoevenagel/Michael reaction. J Chem Sci. 2016;128 (5):849–854. doi:10.1007/s12039-016-1080-6

Astarian J, Heydari R, Maghsoodlou MT, Yazdani-Elah-Abadi A. An efficient synthesis of 2, 2'-arylmethylene bis (3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) derivatives using baker's yeast. Rev Roum Chim. 2019;64:259–264. doi:10.33224/rrch.2019.64.3.07

Vaid R, Gupta M, Kant R, Gupta VK. Domino Knoevenagel/Michael synthesis of 2, 2’-arylmethylenebis (3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one) derivatives cata-lyzed by silica-diphenic acid and their single crystal X-ray analysis. J Chem Sci. 2016;128(6):967–976. doi:10.1007/s12039-016-1088-y

Ganesh Babu S, Karvembu R. CuO nanoparticles: a simple, effective, ligand free, and reusable heterogeneous catalyst for N-arylation of benzimidazole. Ind Eng Chem Res. 2011;50(16):9594–9600. doi:10.1021/ie200797e

Arora P, Kumar P, Tomar V, Sillanpää M, Joshi RK, Nemiwal M. C–N cross-coupling organic transformations catalyzed via copper oxide nanoparticles: A review (2016-present). Inorg Chem Commun. 2022;145:109982. doi:10.2139/ssrn.4127322

Arunkumar B, Jeyakumar S, Jothibas, MA. Strains Activity of CuO Nanoparticles using Copper Chloride Dihydrate by Sol-Gel Method. Asian J Chem. 2019;31(4):886–890. doi:10.14233/ajchem.2019.21820

Venyaminov SY, Prendergast FG. Water (H2O and D2O) molar absorptivity in the 1000-4000 cm-1 range and quantitative in-frared spectroscopy of aqueous solutions. Anal Biochem. 1997;248:234–245. doi:10.1006/abio.1997.2136

42. Dhineshbabu NR, Rajendran V. Antibacterial activity of hybrid chitosan–cupric oxide nanoparticles on cotton fabric. IET nanobiotechnol. 2016;10(1):13-19. doi:10.1049/iet-nbt.2014.0073

Jin TS, Zhang JS, Wang AQ. & Li TS. Solid State Condensation Reactions Between Aldehydes and 5,5 Dimethyl 1,3cyclohexanedione by Grinding at Room Temperature Synth Commun. 2005;35(17):2339–2345. doi:10.1002/chin.200603148




DOI: https://doi.org/10.15826/chimtech.2024.11.3.03

Copyright (c) 2024 Ravina Meena, Harshita Sachdeva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice