The effect of silicon dioxide on the structural, thermal and transport properties of an organic ionic plastic crystal (n-C4H9)4NBF4
Abstract
Keywords
Full Text:
PDFReferences
Campanella D, Belanger D, Paolella A. Beyond Garnets, Phosphates and Phosphosulfides Solid Electrolytes: New Ceramic Perspectives for All Solid Lithium Metal Batteries. J Power Sources. 2021;482:228949. doi:10.1016/j.jpowsour.2020.228949
Li S, Zhang S, Shen L, Liu Q, Ma J, Lv W, He Y, Yang Q. Pro-gress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Adv Sci. 2020;7(5):1903088. doi:10.1002/advs.20190308
Park KH, Bai Q, Kim DH, Oh DY, Zhu Y, Mo Y, Jung YS. De-sign Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All‐Solid‐State Batteries. Adv. Energy Mater. 2018;8(18):1800035. doi:10.1002/aenm.201800035.
Ye T, Li L, Zhang Y. Recent Progress in Solid Electrolytes for Energy Storage Devices. Adv. Funct. Mater. 2020;30(29):2000077. doi:10.1002/adfm.202000077.
Kumaravel V, Bartlett J, Pillai SC. Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors. Adv Energy Mater. 2021;11(3):2002869. doi:10.1002/aenm.202002869
Chen S, Wen K, Fan J, Bando Y, Golberg D. Progress and Future Prospects of High-Voltage and High-Safety Electro-lytes in Advanced Lithium Batteries: From Liquid to Solid Electrolytes. J. Mater. Chem. A. 2018;6(25):11631–11663. doi:10.1039/C8TA03358G
Hou M, Liang F, Chen K, Dai Y, Xue D. Challenges and Per-spectives of NASICON-Type Solid Electrolytes for All-Solid-State Lithium Batteries. Nanotechnol. 2020;31(13):132003. doi:10.1088/1361-6528/ab5be7
Wu Z, Xie Z, Yoshida A, Wang Z, Hao X, Abudula A, Guan G. Utmost Limits of Various Solid Electrolytes in All-Solid-State Lithium Batteries: A Critical Review. Renew Sustain Energy Rev. 2019;109:367–385. doi:10.1016/j.rser.2019.04.035
Uvarov NF, Iskakova AA, Bulina NV, Gerasimov KB, Slo-bodyuk AB, Kavun VYa. Ion Conductivity of the Plastic Phase of the Organic Salt [(C4H9)4N]BF4. Russ J Electro-chem. 2015;51(5):491–494. doi:10.1134/S102319351505016X
Abeysooriya S, Makhlooghiazad F, Chotard J-N, O’Dell LA, Pringle JM. Investigation of the Physicochemical Properties of Pyrrolidinium-Based Mixed Plastic Crystal Electrolytes. J Phys Chem C. 2023;127(25):12304–12320. doi:10.1021/acs.jpcc.3c02249
Pringle JM, Adebahr J, MacFarlane DR, Forsyth M. Unusual Phase Behaviour of the Organic Ionic Plastic Crystal N,N-Dimethylpyrrolidinium Tetrafluoroborate. Phys Chem Chem Phys. 2010;12(26):7234–7240. doi:10.1039/B925501J
Chae H, Lee Y-H, Yang M, Yoon W-J, Yoon DK, Jeong K-U, Song YH, Choi UH, Lee M. Interesting Phase Behaviors and Ion-Conducting Properties of Dicationic N -Alkylimidazolium Tetrafluoroborate Salts. RSC Adv. 2019;9(7):3972–3978. doi:10.1039/C8RA09208G
Matsumoto K, Harinaga U, Tanaka R, Koyama A, Hagiwara R, Tsunashima K. The Structural Classification of the High-ly Disordered Crystal Phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] Salts (Nn+ = Tetraalkylammoni-um and Pn+ = Tetraalkylphosphonium). Phys. Chem. Chem. Phys. 2014;16(43):23616–23626. doi:10.1039/C4CP03391D
Sourjah A, Kang CSM, Doherty CM, Acharya D, O’Dell LA, Pringle JM. New Organic Ionic Plastic Crystals Utilizing the Morpholinium Cation. Phys Chem Chem Phys. 2023;25(24):16469–16482. doi:10.1039/D3CP00759F
MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M. Pyr-rolidinium Imides: A New Family of Molten Salts and Con-ductive Plastic Crystal Phases. J Phys Chem. B. 1999;103(20):4164–4170. doi:10.1021/jp984145s
Janikowski J, Razali MR, Forsyth CM, Nairn KM, Batten SR, MacFarlane DR, Pringle JM. Physical Properties and Struc-tural Characterization of Ionic Liquids and Solid Electro-lytes Utilizing the Carbamoylcyano(Nitroso)Methanide An-ion. ChemPlusChem. 2013;78(6):486–497. doi:10.1002/cplu.201300068
Zhu H, MacFarlane DR, Pringle JM, Forsyth M. Organic Ion-ic Plastic Crystals as Solid-State Electrolytes. Trends Chem. 2019;1(1):126–140. doi:10.1016/j.trechm.2019.01.002
Pringle JM, Howlett PC, MacFarlane DR, Forsyth M. Organic Ionic Plastic Crystals: Recent Advances. J Mater Chem. 2010;20(11):2056. doi:10.1039/b920406
Jin L, Nairn KM, Forsyth CM, Seeber AJ, MacFarlane DR, Howlett PC, Forsyth M, Pringle JM. Structure and Transport Properties of a Plastic Crystal Ion Conductor: Dieth-yl(Methyl)(Isobutyl)Phosphonium Hexafluorophosphate. J Am Chem Soc. 2012;134(23):9688–9697. doi:10.1021/ja301175v
Uvarov NF, Asanbaeva NB, Ulihin AS, Mateyshina YG, Gerasimov KB. Thermal Properties and Ionic Conductivity of Tetra-n-Butylammonium Perchlorate. Cryst. 2022; 12(4):515. doi:10.3390/cryst12040515
Yunis R, W. Newbegin T, F. Hollenkamp A, M. Pringle J. Ionic Liquids and Plastic Crystals with a Symmetrical Pyr-rolidinium Cation. Mater Chem Front. 2018;2(6):1207–1214. doi:10.1039/C8QM00016F
Guseva AF, Pestereva NN, Kuznetsov DK, Boyarshinova AA, Gardt VA. Conductivity of Composites MeWO4–Al2O3 (Me = Ca, Sr). Russ J Electrochem. 2023;59(4):284–290. doi:10.1134/S1023193523040079
Uvarov NF, Hairetdinov EF, Skobelev IV. Composite Solid Electrolytes MeNO3-Al2O3 (Me = Li, Na, K). Solid State Ion. 1996;86–88:577–580. doi:10.1016/0167-2738(96)00208-1
Kubataev ZYu, Gafurov MM, Rabadanov KSh, Amirov AM, Akhmedov MA, Kakagasanov MG. The Effect of the Na-nosized Oxide Filler on the Structure and Conductivity of Composite (1–x)(LiClO4–NaClO4)–xAl2O3. Russ J Electro-chem. 2023;59(8):598–603. doi:10.1134/S1023193523080050
Ponomareva VG, Lavrova GV, Simonova LG. Effect of SiO2 Morphology and Pores Size on the Proton Nanocomposite Electrolytes Properties. Solid State Ion. 1999;119(1–4):295–299. doi:10.1016/S0167-2738(98)00517-7
Ulihin AS, Uvarov NF. Electrochemical Properties of Com-position Solid Electrolytes LiClO4-MgO. Russ J Electrochem. 2009;45(6):707–710. doi:10.1134/S1023193509060135
Uvarov NF, Ulihin AS, Slobodyuk AB, Kavun VY, Kirik SD. Nanocomposite Solid Electrolytes Based on Lithium Per-chlorate. ECS Trans. 2008;11(31):9–17. doi:10.1149/1.2953501
Mateyshina Y, Uvarov N. The Effect of Oxide Additives on the Transport Properties of Cesium Nitrite. Solid State Ion. 2018;324:1–6. doi:10.1016/j.ssi.2018.05.017
Ulihin AS, Uvarov NF, Rabadanov KSh, Gafurov MM, Gerasimov KB. Thermal, Structural and Transport Proper-ties of Composite Solid Electrolytes (1-x)(C4H9)4NBF4–xAl2O3. Solid State Ion. 2022;378:115889. doi:10.1016/j.ssi.2022.115889
Adebahr J, Ciccosillo N, Shekibi Y, Macfarlane D, Hill A, Forsyth M. The “Filler-Effect” in Organic Ionic Plastic Crys-tals: Enhanced Conductivity by the Addition of Nano-Sized TiO2. Solid State Ion. 2006;177(9–10):827–831. doi:10.1016/j.ssi.2006.02.022
Pringle JM, Shekibi Y, MacFarlane DR, Forsyth M. The In-fluence of Different Nanoparticles on a Range of Organic Ionic Plastic Crystals. Electrochim Acta. 2010;55(28):8847–8854. doi:10.1016/j.electacta.2010.08.027
Mateyshina Y, Stebnitskii I, Shivtsov D, Ilyina E, Ulihin A, Bukhtiyarov A, Uvarov N. Hybrid Nanocomposite Solid Elec-trolytes (n-C4H9)4NBF4–MgO. Int J Mo Sci. 2023;24(13):10949. doi:10.3390/ijms241310949
Mateyshina Y, Stebnitskii I, Uvarov N. Composite Solid Electrolytes (n-C4H9)4NBF4–Nanodiamonds. Solid State Ion. 2024;404:116419. doi:10.1016/j.ssi.2023.116419
Uvarov NF, Boldyrev VV. Size Effects in Chemistry of Heter-ogeneous Systems. Russ Chem Rev. 2001;70(4):265–284. doi:10.1070/RC2001v070n04ABEH000638
Uvarov NF, Vaněk P, Yuzyuk YuI, Železný V, Studnička V, Bokhonov BB, Dulepov VE, Petzelt J. Properties of Rubidium Nitrate in Ion-Conducting RbNO3-Al2O3 Nanocomposites. Solid State Ion. 1996;90(1):201–207. doi:10.1016/S0167-2738(96)00400-6
Stebnitsky IA, Uvarov NF, Mateyshina YuG. Synthesis and Study of the Physicochemical Properties of Composite Solid Electrolytes (C4H9)3CH3NBF4–Cnanodiamonds. Russ J Elec-trochem. 2024;60(1):18–24. doi:10.1134/S1023193524010105
Rabadanov KSh, Gafurov MM, Uvarov NF, Ulikhin AS. Tem-perature-Phase Dependence of the Vibration Spectrum and Orientation Mobility of the Tetrafluoroborate Ion in n-Bu4NBF4 Organic Salt. Phys Solid State. 2018;60(12):2593–2597. doi:10.1134/S1063783418120235
Uvarov NF. Composite Solid Electrolytes: Recent Advances and Design Strategies. J Solid State Electrochem. 2011;15(2):367–389. doi:10.1007/s10008-008-0739-4
DOI: https://doi.org/10.15826/chimtech.2024.11.3.07
Copyright (c) 2024 Ivan Stebnitskii, Yulia Mateyshina, Nikolai Uvarov
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International